Do you want to publish a course? Click here

Synthesis of Mo-Fe2O3 by Co-precipitation method and study of its structure and charactreristics

دراسة التغيرات البنيوية لفرات الزنك المحضر بطريقة الترسيب المشترك الCO-Precipitation بتغير درجة الحرارة

961   0   74   0 ( 0 )
 Publication date 2017
  fields Chemistry
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Our research aims to prepare ZnFe2O4 system by CO-precipitation method in aqueous solution,starting from the raw materials, and then studying its structure and properties .After finishing the preparation period, we divided the precipitate in two parts , and then we added to one of them the hydrogen peroxide and then we dried every part alone, grind it and then we heated it at various temperatures for two hours .

References used
R. M. Sebastian, K. Maniammal, Sh. Xavier, E. M. Mohammed, 2013, STRUCTURAL AND DIELECTRIC STUDIESOF Cr3+ DOPED ZnFe2O4 NANOPARTICLES , Nano Studies, 2013, 8, 121-130
Elsayed1.A.H, MohyEldin.M. S, Elsyed.A.M, Abo Elazm .A. H,Younes.E.M, Motaweh.H. A, 2011, Synthesis and Properties of PolyanilineferritesNanocomposites, Int. J. Electrochem. Sci., 6 (2011) 206 – 221
Arturo. I, Martinez. M, Garcia-Lobato and Dale L. Perry,STUDY OF THE PROPERTIES OF IRON OXIDE NANOSTRUCTURE
rate research

Read More

Zinc Chromate was synthesised by Co-precipitation method, The synthesised samples were characterized using X-ray powder diffraction technology (XRD). Set temperature synthesis at 250 ℃ .
ZnCo2O4 spinel was successfully prepared via co-precipitation process starting from corresponding metal chlorides in aqueous solutions at pH=13. Different calcination temperatures (400-500- 600-700-800-1000oC) and different Zn:Co molar ratios (1:2 - 1:2.5) were applied in an effort to prepare this important spinel with perfect specifications starting from cheap, easy to handle inorganic precursors and using a simple process. This process was chosen for its simple requirements and the ability to modify the resulting spinel characteristics by adjusting different parameters easily like mixing temperature, time and speed and the drying conditions. The resulting samples were characterized using x-ray powder diffraction (XRPD), Fourier transform Infra-Red spectroscopy (FT-IR), Differential thermal analysis (DTA). The coloration, crystallinity size, formation and decomposition of the resulting ZnCo2O4 were found to depend on the calcination temperatures, Zn:Co molar ratio and stirring time. Results showed that ZnCo2O4 spinel was formed at relatively low temperatures. All the samples shared a cubic structure with Fd3m space group.
CaMnO3 was synthesized by a Solid State method. MnO2 and CaO were used as precursors. The temperature of synthesis was 1100°C. X-ray diffraction analysis (XRD) revealed that the CaMnO3 was synthesized. XRD results showed that the prepared compound was polycrystalline and had orothohombic structure.
In this paper we present the structural, optical and electrical characteristics of ZnO thin films grown for different parameters by the atomic layer deposition (ALD) method. The films were grown on glass and silicon substrates at low temperatures. We used diethyl-zinc (DEZn) and deionized water as zinc and an oxygen sources, respectively. Measurements of surface morphology, photoluminescence at room temperature (RT PL) and Hall Effect were made for ZnO layers. The films obtained at 130°C show the highest carrier concentration (1.1×1019 cm-3) and the lowest resistivity (2.84×10-2 Wcm). The films exhibit mobility up to 19.98 cm2/Vs that we associate to the technological process used.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا