Do you want to publish a course? Click here

Inexact Approach for Interior Point Methods for Large Scale Quadratic Optimization

طرائق النقاط الداخلية غير المباشرة لحل مسائل الحل الأمثل التربيعية الضخمة

1355   0   56   0 ( 0 )
 Publication date 2011
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Interior point methods are considered the most powerful tools for solving linear, quadratic and nonlinear programming. In each iteration of interior point method (IPM) at least one linear system has to be solved. The main computational effort of IPMs consist in the computational of these linear systems. That drives many researchers to tackle this subject, which make this area of research very active. The issue of finding a preconditioner for this linear system was investigated in many papers. In this paper, we provide a preconditioner for interior point methods for quadratic programming. This preconditioner makes the system easier to be solved comparing with the direct approach. The preconditioner used follows the ideas, which is used for linear approach. An explicit null space representation of linear constraints is constructed by using a non-singular basis matrix identified from an estimate of the optimal partition. This is achieved by means of efficient basis matrix factorisation techniques used in implementations of the revised simplex method.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية استخدام الطرق الداخلية (Interior Point Methods) لحل مسائل البرمجة التربيعية واسعة النطاق. تعتبر هذه الطرق من أقوى الأدوات لحل البرمجة الخطية والتربيعية وغير الخطية. في كل تكرار من هذه الطرق، يجب حل نظام خطي واحد على الأقل، مما يشكل الجزء الأكبر من الجهد الحسابي. لذلك، ركز العديد من الباحثين على إيجاد محسنات (preconditioners) لهذه الأنظمة الخطية. تقدم الورقة محسنًا جديدًا يجعل النظام أسهل في الحل مقارنة بالنهج المباشر. يتبع المحسن المستخدم أفكارًا مستخدمة في النهج الخطي، حيث يتم بناء تمثيل صريح للقيود الخطية باستخدام مصفوفة أساس غير مفردة. يتم تحقيق ذلك من خلال تقنيات تحليل مصفوفة الأساس المستخدمة في تطبيقات طريقة السمبلكس المعدلة. تقدم الورقة أيضًا تحليلًا للنتائج العددية التي تظهر توفيرًا كبيرًا في التخزين الحاسوبي عند استخدام المحسن المقترح مقارنة بالطرق التقليدية.
Critical review
دراسة نقدية: تقدم هذه الورقة مساهمة قيمة في مجال البرمجة التربيعية من خلال تقديم محسن جديد لأنظمة النقاط الداخلية. ومع ذلك، يمكن أن تكون الورقة أكثر وضوحًا في شرح بعض المفاهيم الرياضية المعقدة، مما قد يسهل على القراء غير المتخصصين فهمها. بالإضافة إلى ذلك، يمكن أن تستفيد الورقة من تقديم أمثلة تطبيقية أكثر توضيحًا لكيفية استخدام المحسن في مسائل حقيقية. على الرغم من أن النتائج العددية مشجعة، إلا أن الورقة لا تقدم تحليلًا كافيًا حول كيفية تأثير المحسن على الأداء في حالات مختلفة من المشاكل التربيعية. بشكل عام، تعتبر الورقة إضافة قيمة للأدبيات العلمية في هذا المجال، ولكن يمكن تحسينها من خلال توضيح أكبر وتقديم أمثلة تطبيقية أكثر.
Questions related to the research
  1. ما هو الهدف الرئيسي من هذه الورقة البحثية؟

    الهدف الرئيسي هو تقديم محسن جديد لأنظمة النقاط الداخلية لحل مسائل البرمجة التربيعية واسعة النطاق.

  2. ما هي المشكلة الرئيسية التي تحاول الورقة حلها؟

    المشكلة الرئيسية هي الجهد الحسابي الكبير المطلوب لحل الأنظمة الخطية في كل تكرار من طرق النقاط الداخلية، خاصة عندما تكون المشاكل واسعة النطاق.

  3. كيف يساهم المحسن المقترح في تحسين الأداء الحسابي؟

    المحسن المقترح يجعل النظام أسهل في الحل مقارنة بالنهج المباشر، مما يقلل من عدم الاستقرار العددي ويوفر في التخزين الحاسوبي.

  4. ما هي النتائج العددية التي توصلت إليها الورقة؟

    النتائج العددية تظهر توفيرًا كبيرًا في التخزين الحاسوبي عند استخدام المحسن المقترح مقارنة بالطرق التقليدية، حيث تم توفير أكثر من 50% من التخزين في معظم الحالات.


References used
Al-Jeiroudi, G. and Gondzio, J. (2009). Convergence analysis of inexact infeasible interior point method for linear optimization. Journal on Optimization Theory and Applications, V.247, pp. 141:231
Al-Jeiroudi, G. Gondzio, J. and Hall, J. (2008). Preconditioning indefinite systems in interior point methods for large scale linear optimization. Optimization Methods and Software, V.23, pp.345–363
Andersen, E. Gondzio, J. Meszaros, C. and Xu, X. (1996). Implementation of interior point methods for large scale linear programming. In T. Terlaky, editor, Interior Point Methods in Mathematical Programming, Kluwer Academic Publishers, pp. 189–252
rate research

Read More

we constructed a continuation predictor- corrector algorithm that solves constrained optimization problems. Smooth penalty functions combined with numerical continuation, along with the use of the expanded Lagrangian system, were essential compone nts of the algorithm. An improvement of this algorithm was published, which dealt with the linear algebra in the corrector part of the algorithm.
Conjugate gradient algorithms are important for solving unconstrained optimization problems, so that we present in this paper conjugate gradient algorithm depending on improving conjugate coefficient achieving sufficient descent condition and globa l convergence by doing hybrid between the two conjugate coefficients [1] and [2]. Numerical results show the efficiency of the suggested algorithm after its application on several standard problems and comparing it with other conjugate gradient algorithms according to number of iterations, function value and norm of gradient vector.
The purpose of research is the study and analysis of some of the stochastic semi-gradient methods and their applicability to find the optimal solution for the issues of optimization are subject to the effects Random and conditions are controlled by c hance, as we proved the convergence of some of these mathematical methods and their effectiveness for some of the issues of stochastic non-convex and equipped objective function and specific constraints and where taken energy complex solar as an example
Multi-objective evolutionary algorithms are used in a wide range of fields to solve the issues of optimization, which require several conflicting objectives to be considered together. Basic evolutionary algorithm algorithms have several drawbacks, such as lack of a good criterion for termination, and lack of evidence of good convergence. A multi-objective hybrid evolutionary algorithm is often used to overcome these defects.
في المشكلة التي نعالجها, تحتاج شركة اتصالات إلى بناء مجموعة من الأبراج الخلوية لتوفير خدمة الاتصالات الخليوية للسكان في منطقة جغرافية. تم تحديد عدد من المواقع المحتملة لبناء الأبراج. يعتم اختيار هذه المواقع على عدة عوامل ، بما في ذلك مدى اتساق البرج مع البيئة المحيطة وارتفاع التضاريس, تتمتع الأبراج بمدى تغطية ثابت ، وبسبب قيود الميزانية ، لا يمكن بناء سوى عدد محدود منها . بالنظر إلى هذه القيود ، ترغب الشركة في توفير تغطية لأكبر قدر ممكن من السكان, والهدف هو اختيار في أي من المواقع المحتملة يجب أن تقوم الشركة ببناء الأبراج. إن المشكلة التي شرحناها يمكن نمذجتها لتصبح أحد أمثلة مشكلة 0/1 knapsack الشهيرة لذلك شرحنا في الحلقة مفهوم مشكلة 0/1 Knapsack والطرق المستخدمة في الحل, وتوسعنا في الشرح عن خوارزمية Branch and Bound كونها تعتبر أفضلها.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا