Do you want to publish a course? Click here

Synthesis and Steriostructure of 5-(5-R-2- Furfurlidene) – barbituric acid

الاصطناع و البنية الفراغية لمركبات 5-(5-R-2-فورفوريليدن) - حمض الباربيتوريك

901   0   24   0 ( 0 )
 Publication date 2011
  fields Chemistry
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Hetrocyclic compounds 5-(5-R-2-Furfurlidene)– barbituric acid were obtained and their physical and chemical properties were studied. Their structures were identified by spectoroscopic methods. This study proved by 1H-NMR Spectroscopy data that these compounds exist in S-cis form.


Artificial intelligence review:
Research summary
تتناول هذه الورقة البحثية تحضير ودراسة التركيب الفراغي لمركبات 5-(5-R-2-فورفوريلدين)-حمض الباربيتوريك. تم الحصول على هذه المركبات ودراسة خصائصها الفيزيائية والكيميائية باستخدام طرق التحليل الطيفي. أثبتت الدراسة باستخدام بيانات التحليل الطيفي بالرنين المغناطيسي النووي للبروتون (1H-NMR) أن هذه المركبات توجد في شكل S-cis. تشمل الكلمات المفتاحية: حمض الباربيتوريك، الفورفورال، الفورفوريلدين.
Critical review
دراسة نقدية: تقدم هذه الورقة البحثية مساهمة مهمة في مجال الكيمياء العضوية من خلال تحضير ودراسة مركبات جديدة. ومع ذلك، يمكن تحسين الورقة من خلال تقديم تفاصيل أكثر حول التطبيقات العملية لهذه المركبات. بالإضافة إلى ذلك، قد يكون من المفيد تضمين مقارنة مع مركبات مشابهة تم دراستها سابقًا لتوضيح الفوائد الفريدة لهذه المركبات. كما أن توفير المزيد من البيانات التجريبية يمكن أن يعزز من مصداقية النتائج المقدمة.
Questions related to the research
  1. ما هي المركبات التي تم دراستها في هذه الورقة البحثية؟

    تم دراسة مركبات 5-(5-R-2-فورفوريلدين)-حمض الباربيتوريك.

  2. ما هي الطرق التحليلية المستخدمة لتحديد تركيب هذه المركبات؟

    تم استخدام طرق التحليل الطيفي، بما في ذلك التحليل الطيفي بالرنين المغناطيسي النووي للبروتون (1H-NMR).

  3. ما هو الشكل الفراغي الذي توجد فيه هذه المركبات؟

    توجد هذه المركبات في شكل S-cis.

  4. ما هي الكلمات المفتاحية التي تلخص محتوى الورقة البحثية؟

    الكلمات المفتاحية تشمل: حمض الباربيتوريك، الفورفورال، الفورفوريلدين.


References used
Barrettg, G. C. (1980). The chemistry of 1.3 thiazolinone liydroxy 1.3 thiazole systems, Tetra hedron Report, P. 2023 - 2054
Shkrop, A. M.; Rodionov, A. V.; Ovchennikov, U. A. (1981). Aromaticheskie analogy bokterio soedynenia, V.7, No.8, P.1169 1194
Ramsh, S. M.; Soloveova, S. U.; Gynak, A. E. (1983). Stroenia 2-tiookco-5- arylyden–4 thiazolidinon, chimia heterocyclic Soedynenia, No.6, P. 764-768
rate research

Read More

A novel Azo-Schiff base ligand L 2-[1.5-Dimethyl-3-[2-(5-methyl-1H-indol- 3-yl) - ethylimino] - 2 - phenyl - 2,3 - dihydro - 1H - pyrazol - 4 - ylazo] - 5- hydroxy -benzoic acid has been synthesized from reaction 1.5-Dimethyl-3-[2-(5- methyl- 1H - indol - 3 - yl) - ethylimino] - 2 - phenyl - 2.3 - dihydro - 1H - pyrazol - 4 - ylamine (A) with m-hydroxy benzoic acid. Then, its Zn(II), Cd(II) and Hg(II) complexes were synthesized with the general formula [ML1Cl] where M = Zn(II), Cd(II) and Hg(II) are reported. The ligand and its metal complexes have been characterized by elemental analysis, metal content, Chloride containing, molar conductance, FT-IR, 1H and 13C- NMR, UV-Vis spectra, magnetic susceptibility, thermal analysis, and mass spectra. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS* ΔG* and K are calculated from the TGA curve using Coats-Red fern method. The all prepared complexes were assayed for antibacterial (Escherichia coli and Staphylococcus aureus) activities by disc diffusion method. The results indicate that all tested ligand and complexes show antibacterial activity against E. coli and S aureus, as gram negative and positive bacteria.
The Toxic Spans Detection task of SemEval-2021 required participants to predict the spans of toxic posts that were responsible for the toxic label of the posts. The task could be addressed as supervised sequence labeling, using training data with gol d toxic spans provided by the organisers. It could also be treated as rationale extraction, using classifiers trained on potentially larger external datasets of posts manually annotated as toxic or not, without toxic span annotations. For the supervised sequence labeling approach and evaluation purposes, posts previously labeled as toxic were crowd-annotated for toxic spans. Participants submitted their predicted spans for a held-out test set and were scored using character-based F1. This overview summarises the work of the 36 teams that provided system descriptions.
Toxic language is often present in online forums, especially when politics and other polarizing topics arise, and can lead to people becoming discouraged from joining or continuing conversations. In this paper, we use data consisting of comments with the indices of toxic text labelled to train an RNN to deter-mine which parts of the comments make them toxic, which could aid online moderators. We compare results using both the original dataset and an augmented set, as well as GRU versus LSTM RNN models.
This paper discusses different approaches to the Toxic Spans Detection task. The problem posed by the task was to determine which words contribute mostly to recognising a document as toxic. As opposed to binary classification of entire texts, word-le vel assessment could be of great use during comment moderation, also allowing for a more in-depth comprehension of the model's predictions. As the main goal was to ensure transparency and understanding, this paper focuses on the current state-of-the-art approaches based on the explainable AI concepts and compares them to a supervised learning solution with word-level labels. The work consists of two xAI approaches that automatically provide the explanation for models trained for binary classification of toxic documents: an LSTM model with attention as a model-specific approach and the Shapley values for interpreting BERT predictions as a model-agnostic method. The competing approach considers this problem as supervised token classification, where models like BERT and its modifications were tested. The paper aims to explore, compare and assess the quality of predictions for different methods on the task. The advantages of each approach and further research direction are also discussed.
We present the results and main findings of the shared task at WOAH 5 on hateful memes detection. The task include two subtasks relating to distinct challenges in the fine-grained detection of hateful memes: (1) the protected category attacked by the meme and (2) the attack type. 3 teams submitted system description papers. This shared task builds on the hateful memes detection task created by Facebook AI Research in 2020.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا