تتطلب مهمة الكشف عن المسافة السامة في Semeval-2021 المشاركين الذين يتعين على المشاركين التنبؤ بالوظائف السامة التي كانت مسؤولة عن الملصق السام للوظائف.يمكن معالجة المهمة كمصموع تسلسل إشراف، باستخدام بيانات التدريب مع يمتد سامة الذهب المقدمة من المنظمين.يمكن التعامل معها أيضا على أنها استخراج الأساس المنطقي، باستخدام مصنفات مدربين على مجموعات بيانات خارجية أكبر من الوظائف المشروحة يدويا على أنها سامة أم لا، دون شروح سامةبالنسبة لنهج وضع التسلسل الإشرافي وأغراض التقييم، كانت الوظائف التي سبق وصفها بأنها سامة مشروحة من أشكال الجماهير السامة.قدم المشاركون يمتدين المتوقعين من أجل مجموعة اختبار محمولة وسجلوا باستخدام F1 القائمة على الطابع.يلخص النظرة نظرة عامة عمل الفرق 36 التي قدمت أوصاف النظام.
The Toxic Spans Detection task of SemEval-2021 required participants to predict the spans of toxic posts that were responsible for the toxic label of the posts. The task could be addressed as supervised sequence labeling, using training data with gold toxic spans provided by the organisers. It could also be treated as rationale extraction, using classifiers trained on potentially larger external datasets of posts manually annotated as toxic or not, without toxic span annotations. For the supervised sequence labeling approach and evaluation purposes, posts previously labeled as toxic were crowd-annotated for toxic spans. Participants submitted their predicted spans for a held-out test set and were scored using character-based F1. This overview summarises the work of the 36 teams that provided system descriptions.
References used
https://aclanthology.org/
Toxic language is often present in online forums, especially when politics and other polarizing topics arise, and can lead to people becoming discouraged from joining or continuing conversations. In this paper, we use data consisting of comments with
Detection of toxic spans - detecting toxicity of contents in the granularity of tokens - is crucial for effective moderation of online discussions. The baseline approach for this problem using the transformer model is to add a token classification he
This paper presents our submission to SemEval-2021 Task 5: Toxic Spans Detection. The purpose of this task is to detect the spans that make a text toxic, which is a complex labour for several reasons. Firstly, because of the intrinsic subjectivity of
In this work, we present our approach and findings for SemEval-2021 Task 5 - Toxic Spans Detection. The task's main aim was to identify spans to which a given text's toxicity could be attributed. The task is challenging mainly due to two constraints:
This paper presents a system used for SemEval-2021 Task 5: Toxic Spans Detection. Our system is an ensemble of BERT-based models for binary word classification, trained on a dataset extended by toxic comments modified and generated by two language mo