Do you want to publish a course? Click here

“Zaman”: An approach to a Temporal DBMS

"زمن": مقاربة لنظام إدارة قواعد معطيات زمنية

1136   0   13   0 ( 0 )
 Publication date 2010
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

There was within the last 50 years a lot of database applications in which time plays an important role. These applications revealed a lack in time support within the current DBMSs as the application should give the data the temporal semantics related to it, also to check the temporal constraints. Therefore, researches were made in order to embed this temporal semantics and constraints in the DBMS itself, also to provide a new query language that can be tagged as “temporal”.


Artificial intelligence review:
Research summary
يتناول هذا البحث مشكلة نقص دعم الدلالات الزمنية في نظم إدارة قواعد المعطيات الحالية، ويقترح حلاً من خلال تطوير نظام إدارة قواعد معطيات زمنية يسمى 'زمن'. يعتمد النظام على تغليف نظام إدارة قواعد معطيات علائقي بطبقة برمجية تدعم الدلالات والقيود الزمنية، وتوفر واجهة للتخاطب مع التطبيقات الزمنية بلغة استعلام زمنية متوافقة مع SQL-92. يتضمن البحث شرحاً للأبعاد الزمنية وأنواع الجداول الزمنية المختلفة، مثل جداول الصلاحية وجداول المناقلة والجداول الثنائية الزمن، بالإضافة إلى النماذج المستعملة لتمثيل قواعد المعطيات الزمنية. كما يقدم النظام لغة استعلام زمنية جديدة تسمى zSQL، ويشرح كيفية عمل الطبقة البرمجية التي تغلف نظام إدارة قواعد المعطيات العلائقي، بالإضافة إلى مكتبة برمجية تساعد المطورين على تضمين الدلالات الزمنية في تطبيقاتهم بسهولة.
Critical review
دراسة نقدية: يقدم البحث حلاً مبتكراً لمشكلة نقص دعم الدلالات الزمنية في نظم إدارة قواعد المعطيات الحالية، ويعتمد على تطوير طبقة برمجية تغلف نظام إدارة قواعد معطيات علائقي. ومع ذلك، يمكن أن تواجه هذه المقاربة تحديات في الأداء والكفاءة عند التعامل مع كميات كبيرة من البيانات الزمنية. كما أن الاعتماد على لغة استعلام جديدة قد يتطلب من المطورين تعلم مهارات جديدة، مما قد يكون عائقاً أمام تبني النظام على نطاق واسع. بالإضافة إلى ذلك، لم يتناول البحث بشكل كافٍ كيفية التعامل مع التحديثات الزمنية المعقدة والمتداخلة، وهو ما قد يكون ضرورياً في بعض التطبيقات الزمنية المتقدمة.
Questions related to the research
  1. ما هي المشكلة الرئيسية التي يعالجها البحث؟

    يعالج البحث مشكلة نقص دعم الدلالات الزمنية في نظم إدارة قواعد المعطيات الحالية، مما يضطر المطورين إلى معالجة هذه الدلالات برمجياً داخل كل تطبيق على حدة.

  2. ما هو الحل المقترح في البحث؟

    يقترح البحث تطوير نظام إدارة قواعد معطيات زمنية يسمى 'زمن' يعتمد على تغليف نظام إدارة قواعد معطيات علائقي بطبقة برمجية تدعم الدلالات والقيود الزمنية، وتوفر واجهة للتخاطب مع التطبيقات الزمنية بلغة استعلام زمنية جديدة تسمى zSQL.

  3. ما هي أنواع الجداول الزمنية التي تم تناولها في البحث؟

    تم تناول عدة أنواع من الجداول الزمنية في البحث، منها جداول الصلاحية، جداول المناقلة، الجداول الثنائية الزمن، والجداول اللازمنية.

  4. ما هي لغة الاستعلام الزمنية التي تم تطويرها في النظام المقترح؟

    تم تطوير لغة استعلام زمنية جديدة تسمى zSQL، وهي متوافقة زمنياً مع SQL-92 وتدعم الدلالات الزمنية.


References used
Extending Temporal Databases to Deal with Telic/Atelic Medical Data. Terenziani, P., et al. 2, s.l. : Elsevier Science Publishers Ltd., 2007, Artificial Intelligence in Medicine, Vol. 39, pp. 113-126. ISSN:0933-3657
Jensen, C. S. Introduction to Temporal Database Research. [book auth.] R. T. Snodgrass. The TSQL2 Temporal Query Language. 1995, pp. 1-27
Jensen, C. S. and Dyreson, C. E., [ed.].A Consensus Glossary of Temporal—February 1998 Version. 21. 1998. pp. 367–405
rate research

Read More

This researchdeals with the topic of controlling the cost of concrete bridge projects in the early design phase. The research aims at using cost controlling as an auxiliary tool for designing and decision making.Cost control methodology has been pr oposed based on modeling the elements of structure, and proposing a method forcost estimate. This method based on estimating of quantitiesfrom the general parameters of the structure and prices are being updated periodically.The proposed methodology studiesmany available alternatives that werechosen by the designer andevaluate thesealternativeseconomically.
The intent of this paper is to present a novel quantitative equation to assess information security level for enterprises, establishments and corporate generally, and financial institutions specifically in public and private sectors in Syria. This method is the result of statistical study1 which has been applied to a set of financial institutions in Syria as a sample of study to assess the gap between existing information security level and ISO 27K directives for Information and Communication Technology (ICT) security, benefiting from other international approaches and models designed for this purpose. This study aims to highlight the special requirements and the modified framework required to develop ICT security in financial institutions taking into consideration the culture and the special conditions in Syria.
This paper presents an automated system to continuously monitor and control pollution levels of different types of pollutants in industrial plants. Steel producing complexes are considered in this paper to represent an example of industrial plants . The proposed system consists mainly of two major parts; the pollution measuring equipment and the automation system. The measuring devices are sensors, actuators, etc., located at the potential sources of pollutants such as dusts, stacks and chemical processes.
Performance of neural models for named entity recognition degrades over time, becoming stale. This degradation is due to temporal drift, the change in our target variables' statistical properties over time. This issue is especially problematic for so cial media data, where topics change rapidly. In order to mitigate the problem, data annotation and retraining of models is common. Despite its usefulness, this process is expensive and time-consuming, which motivates new research on efficient model updating. In this paper, we propose an intuitive approach to measure the potential trendiness of tweets and use this metric to select the most informative instances to use for training. We conduct experiments on three state-of-the-art models on the Temporal Twitter Dataset. Our approach shows larger increases in prediction accuracy with less training data than the alternatives, making it an attractive, practical solution.
Reliable tagging of Temporal Expressions (TEs, e.g., Book a table at L'Osteria for Sunday evening) is a central requirement for Voice Assistants (VAs). However, there is a dearth of resources and systems for the VA domain, since publicly-available te mporal taggers are trained only on substantially different domains, such as news and clinical text. Since the cost of annotating large datasets is prohibitive, we investigate the trade-off between in-domain data and performance in DA-Time, a hybrid temporal tagger for the English VA domain which combines a neural architecture for robust TE recognition, with a parser-based TE normalizer. We find that transfer learning goes a long way even with as little as 25 in-domain sentences: DA-Time performs at the state of the art on the news domain, and substantially outperforms it on the VA domain.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا