ActiveAnno هي أداة توضيحية تركز على مهام التوضيحية على مستوى المستندات التي وضعت على حد سواء لإعدادات الصناعة والبحثية.وهي مصممة لتكون أداة للأغراض العامة مع مجموعة واسعة من حالات الاستخدام.ويتميز بيو واجهة مستخدم حديثة واستجابة لإنشاء مشاريع توضيحية، وإجراء التعليقات التعليقات التوضيحية، والخلافات، وتحليل نتائج التوضيحية.Activeanno تضمين واجهة مستخدم قابلة للتكوين للغاية والتفاعلية.تقوم الأداة أيضا بإدماج API مريح تمكن التكامل في أنظمة برامج أخرى، بما في ذلك API لتكامل تعليم الجهاز.بنيت Activeanno بتصميم قابل للتوسيع وسهولة النشر في الاعتبار، وكل ذلك لتمكين المستخدمين من أداء مهام التوضيحية ذات الكفاءة العالية ونتائج التوضيحية عالية الجودة.
ActiveAnno is an annotation tool focused on document-level annotation tasks developed both for industry and research settings. It is designed to be a general-purpose tool with a wide variety of use cases. It features a modern and responsive web UI for creating annotation projects, conducting annotations, adjudicating disagreements, and analyzing annotation results. ActiveAnno embeds a highly configurable and interactive user interface. The tool also integrates a RESTful API that enables integration into other software systems, including an API for machine learning integration. ActiveAnno is built with extensible design and easy deployment in mind, all to enable users to perform annotation tasks with high efficiency and high-quality annotation results.
References used
https://aclanthology.org/
Neural machine translation (NMT) is sensitive to domain shift. In this paper, we address this problem in an active learning setting where we can spend a given budget on translating in-domain data, and gradually fine-tune a pre-trained out-of-domain N
Training NLP systems typically assumes access to annotated data that has a single human label per example. Given imperfect labeling from annotators and inherent ambiguity of language, we hypothesize that single label is not sufficient to learn the sp
High-quality arguments are an essential part of decision-making. Automatically predicting the quality of an argument is a complex task that recently got much attention in argument mining. However, the annotation effort for this task is exceptionally
Entity Alignment (EA) aims to match equivalent entities across different Knowledge Graphs (KGs) and is an essential step of KG fusion. Current mainstream methods -- neural EA models -- rely on training with seed alignment, i.e., a set of pre-aligned
EuroVoc is a multilingual thesaurus that was built for organizing the legislative documentary of the European Union institutions. It contains thousands of categories at different levels of specificity and its descriptors are targeted by legal texts i