Do you want to publish a course? Click here

Sequential Cross-Document Coreference Resolution

دقة Coreence Coreence متسلسلة

305   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Relating entities and events in text is a key component of natural language understanding. Cross-document coreference resolution, in particular, is important for the growing interest in multi-document analysis tasks. In this work we propose a new model that extends the efficient sequential prediction paradigm for coreference resolution to cross-document settings and achieves competitive results for both entity and event coreference while providing strong evidence of the efficacy of both sequential models and higher-order inference in cross-document settings. Our model incrementally composes mentions into cluster representations and predicts links between a mention and the already constructed clusters, approximating a higher-order model. In addition, we conduct extensive ablation studies that provide new insights into the importance of various inputs and representation types in coreference.



References used
https://aclanthology.org/
rate research

Read More

Cross-document event coreference resolution is a foundational task for NLP applications involving multi-text processing. However, existing corpora for this task are scarce and relatively small, while annotating only modest-size clusters of documents belonging to the same topic. To complement these resources and enhance future research, we present Wikipedia Event Coreference (WEC), an efficient methodology for gathering a large-scale dataset for cross-document event coreference from Wikipedia, where coreference links are not restricted within predefined topics. We apply this methodology to the English Wikipedia and extract our large-scale WEC-Eng dataset. Notably, our dataset creation method is generic and can be applied with relatively little effort to other Wikipedia languages. To set baseline results, we develop an algorithm that adapts components of state-of-the-art models for within-document coreference resolution to the cross-document setting. Our model is suitably efficient and outperforms previously published state-of-the-art results for the task.
We point out that common evaluation practices for cross-document coreference resolution have been unrealistically permissive in their assumed settings, yielding inflated results. We propose addressing this issue via two evaluation methodology princip les. First, as in other tasks, models should be evaluated on predicted mentions rather than on gold mentions. Doing this raises a subtle issue regarding singleton coreference clusters, which we address by decoupling the evaluation of mention detection from that of coreference linking. Second, we argue that models should not exploit the synthetic topic structure of the standard ECB+ dataset, forcing models to confront the lexical ambiguity challenge, as intended by the dataset creators. We demonstrate empirically the drastic impact of our more realistic evaluation principles on a competitive model, yielding a score which is 33 F1 lower compared to evaluating by prior lenient practices.
In this paper, we present coreference resolution experiments with a newly created multilingual corpus CorefUD (Nedoluzhko et al.,2021). We focus on the following languages: Czech, Russian, Polish, German, Spanish, and Catalan. In addition to monoling ual experiments, we combine the training data in multilingual experiments and train two joined models - for Slavic languages and for all the languages together. We rely on an end-to-end deep learning model that we slightly adapted for the CorefUD corpus. Our results show that we can profit from harmonized annotations, and using joined models helps significantly for the languages with smaller training data.
Coreference resolution is an important compo-nent in analyzing narrative text from admin-istrative data (e.g., clinical or police sources).However, existing coreference models trainedon general language corpora suffer from poortransferability due to domain gaps, especiallywhen they are applied to gender-inclusive datawith lesbian, gay, bisexual, and transgender(LGBT) individuals.In this paper, we an-alyzed the challenges of coreference resolu-tion in an exemplary form of administrativetext written in English: violent death nar-ratives from the USA's Centers for DiseaseControl's (CDC) National Violent Death Re-porting System. We developed a set of dataaugmentation rules to improve model perfor-mance using a probabilistic data programmingframework. Experiments on narratives froman administrative database, as well as existinggender-inclusive coreference datasets, demon-strate the effectiveness of data augmentationin training coreference models that can betterhandle text data about LGBT individuals.
Recent work on entity coreference resolution (CR) follows current trends in Deep Learning applied to embeddings and relatively simple task-related features. SOTA models do not make use of hierarchical representations of discourse structure. In this w ork, we leverage automatically constructed discourse parse trees within a neural approach and demonstrate a significant improvement on two benchmark entity coreference-resolution datasets. We explore how the impact varies depending upon the type of mention.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا