دقة Aqueference هي مؤسسة كوم النظرية مهمة مهمة في تحليل النص السردي من البيانات السردية من البيانات الإدارية (على سبيل المثال، المصادر السريرية أو الشرطة). ومع ذلك، فإن نماذج Coulsference الحالية Transedon اللغة اللغوية تعاني من قدرة سيئة بسبب ثغرات المجال، ولا سيما عند تطبيقها على النوع الاجتماعي شاملة Datawith Lesbian، مثلي الجنس، المخنثين، والجمنانية الهوائية (LGBT) الفرد. في هذه الورقة، نحن Alyzed تحديات طراز Couress Construcation في شكل مثالي من الإدارة المكتوب باللغة الإنجليزية: الموت العنيف NAR-STATIVS من مراكز الولايات المتحدة الأمريكية DISEASECONTROL (CDC) الوطنية للعنف المنعطف. قمنا بتطوير مجموعة من قواعد البيانات لتحسين طراز Perfor-Mance باستخدام برنامج Probabilistic DataPrampramework. تجارب على روايات قاعدة البيانات الإدارية المقدمة، بالإضافة إلى مجموعات البيانات الأساسية التي تعمل بنظام الأساس، وستدير شيطان فعالية نماذج COMENTION التدريبية لتعزيز البيانات التي يمكن أن تقدم بيانات نصية حول الأفراد LGBT.
Coreference resolution is an important compo-nent in analyzing narrative text from admin-istrative data (e.g., clinical or police sources).However, existing coreference models trainedon general language corpora suffer from poortransferability due to domain gaps, especiallywhen they are applied to gender-inclusive datawith lesbian, gay, bisexual, and transgender(LGBT) individuals.In this paper, we an-alyzed the challenges of coreference resolu-tion in an exemplary form of administrativetext written in English: violent death nar-ratives from the USA's Centers for DiseaseControl's (CDC) National Violent Death Re-porting System. We developed a set of dataaugmentation rules to improve model perfor-mance using a probabilistic data programmingframework. Experiments on narratives froman administrative database, as well as existinggender-inclusive coreference datasets, demon-strate the effectiveness of data augmentationin training coreference models that can betterhandle text data about LGBT individuals.
References used
https://aclanthology.org/
External syntactic and semantic information has been largely ignored by existing neural coreference resolution models. In this paper, we present a heterogeneous graph-based model to incorporate syntactic and semantic structures of sentences. The prop
Relating entities and events in text is a key component of natural language understanding. Cross-document coreference resolution, in particular, is important for the growing interest in multi-document analysis tasks. In this work we propose a new mod
In this paper, we present coreference resolution experiments with a newly created multilingual corpus CorefUD (Nedoluzhko et al.,2021). We focus on the following languages: Czech, Russian, Polish, German, Spanish, and Catalan. In addition to monoling
Recent works have found evidence of gender bias in models of machine translation and coreference resolution using mostly synthetic diagnostic datasets. While these quantify bias in a controlled experiment, they often do so on a small scale and consis
We study a new problem of cross-lingual transfer learning for event coreference resolution (ECR) where models trained on data from a source language are adapted for evaluations in different target languages. We introduce the first baseline model for