Do you want to publish a course? Click here

Realistic Evaluation Principles for Cross-document Coreference Resolution

مبادئ التقييم الواقعية لدقة Coreference عبر الوثيقة

501   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We point out that common evaluation practices for cross-document coreference resolution have been unrealistically permissive in their assumed settings, yielding inflated results. We propose addressing this issue via two evaluation methodology principles. First, as in other tasks, models should be evaluated on predicted mentions rather than on gold mentions. Doing this raises a subtle issue regarding singleton coreference clusters, which we address by decoupling the evaluation of mention detection from that of coreference linking. Second, we argue that models should not exploit the synthetic topic structure of the standard ECB+ dataset, forcing models to confront the lexical ambiguity challenge, as intended by the dataset creators. We demonstrate empirically the drastic impact of our more realistic evaluation principles on a competitive model, yielding a score which is 33 F1 lower compared to evaluating by prior lenient practices.



References used
https://aclanthology.org/
rate research

Read More

Relating entities and events in text is a key component of natural language understanding. Cross-document coreference resolution, in particular, is important for the growing interest in multi-document analysis tasks. In this work we propose a new mod el that extends the efficient sequential prediction paradigm for coreference resolution to cross-document settings and achieves competitive results for both entity and event coreference while providing strong evidence of the efficacy of both sequential models and higher-order inference in cross-document settings. Our model incrementally composes mentions into cluster representations and predicts links between a mention and the already constructed clusters, approximating a higher-order model. In addition, we conduct extensive ablation studies that provide new insights into the importance of various inputs and representation types in coreference.
We propose a neural event coreference model in which event coreference is jointly trained with five tasks: trigger detection, entity coreference, anaphoricity determination, realis detection, and argument extraction. To guide the learning of this com plex model, we incorporate cross-task consistency constraints into the learning process as soft constraints via designing penalty functions. In addition, we propose the novel idea of viewing entity coreference and event coreference as a single coreference task, which we believe is a step towards a unified model of coreference resolution. The resulting model achieves state-of-the-art results on the KBP 2017 event coreference dataset.
This paper studies the problem of cross-document event coreference resolution (CDECR) that seeks to determine if event mentions across multiple documents refer to the same real-world events. Prior work has demonstrated the benefits of the predicate-a rgument information and document context for resolving the coreference of event mentions. However, such information has not been captured effectively in prior work for CDECR. To address these limitations, we propose a novel deep learning model for CDECR that introduces hierarchical graph convolutional neural networks (GCN) to jointly resolve entity and event mentions. As such, sentence-level GCNs enable the encoding of important context words for event mentions and their arguments while the document-level GCN leverages the interaction structures of event mentions and arguments to compute document representations to perform CDECR. Extensive experiments are conducted to demonstrate the effectiveness of the proposed model.
Semantic textual similarity (STS) systems estimate the degree of the meaning similarity between two sentences. Cross-lingual STS systems estimate the degree of the meaning similarity between two sentences, each in a different language. State-of-the-a rt algorithms usually employ a strongly supervised, resource-rich approach difficult to use for poorly-resourced languages. However, any approach needs to have evaluation data to confirm the results. In order to simplify the evaluation process for poorly-resourced languages (in terms of STS evaluation datasets), we present new datasets for cross-lingual and monolingual STS for languages without this evaluation data. We also present the results of several state-of-the-art methods on these data which can be used as a baseline for further research. We believe that this article will not only extend the current STS research to other languages, but will also encourage competition on this new evaluation data.
We study a new problem of cross-lingual transfer learning for event coreference resolution (ECR) where models trained on data from a source language are adapted for evaluations in different target languages. We introduce the first baseline model for this task based on XLM-RoBERTa, a state-of-the-art multilingual pre-trained language model. We also explore language adversarial neural networks (LANN) that present language discriminators to distinguish texts from the source and target languages to improve the language generalization for ECR. In addition, we introduce two novel mechanisms to further enhance the general representation learning of LANN, featuring: (i) multi-view alignment to penalize cross coreference-label alignment of examples in the source and target languages, and (ii) optimal transport to select close examples in the source and target languages to provide better training signals for the language discriminators. Finally, we perform extensive experiments for cross-lingual ECR from English to Spanish and Chinese to demonstrate the effectiveness of the proposed methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا