Do you want to publish a course? Click here

Abstract, Rationale, Stance: A Joint Model for Scientific Claim Verification

مجردة، الأساس المنطقي، الموقف: نموذج مشترك للتحقق من المطالبة العلمية

366   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Scientific claim verification can help the researchers to easily find the target scientific papers with the sentence evidence from a large corpus for the given claim. Some existing works propose pipeline models on the three tasks of abstract retrieval, rationale selection and stance prediction. Such works have the problems of error propagation among the modules in the pipeline and lack of sharing valuable information among modules. We thus propose an approach, named as ARSJoint, that jointly learns the modules for the three tasks with a machine reading comprehension framework by including claim information. In addition, we enhance the information exchanges and constraints among tasks by proposing a regularization term between the sentence attention scores of abstract retrieval and the estimated outputs of rational selection. The experimental results on the benchmark dataset SciFact show that our approach outperforms the existing works.



References used
https://aclanthology.org/
rate research

Read More

This article describes research on claim verification carried out using a multiple GAN-based model. The proposed model consists of three pairs of generators and discriminators. The generator and discriminator pairs are responsible for generating synt hetic data for supported and refuted claims and claim labels. A theoretical discussion about the proposed model is provided to validate the equilibrium state of the model. The proposed model is applied to the FEVER dataset, and a pre-trained language model is used for the input text data. The synthetically generated data helps to gain information that improves classification performance over state of the art baselines. The respective F1 scores after applying the proposed method on FEVER 1.0 and FEVER 2.0 datasets are 0.65+-0.018 and 0.65+-0.051.
Detecting stance on Twitter is especially challenging because of the short length of each tweet, the continuous coinage of new terminology and hashtags, and the deviation of sentence structure from standard prose. Fine-tuned language models using lar ge-scale in-domain data have been shown to be the new state-of-the-art for many NLP tasks, including stance detection. In this paper, we propose a novel BERT-based fine-tuning method that enhances the masked language model for stance detection. Instead of random token masking, we propose using a weighted log-odds-ratio to identify words with high stance distinguishability and then model an attention mechanism that focuses on these words. We show that our proposed approach outperforms the state of the art for stance detection on Twitter data about the 2020 US Presidential election.
This work describes the adaptation of a pretrained sequence-to-sequence model to the task of scientific claim verification in the biomedical domain. We propose a system called VerT5erini that exploits T5 for abstract retrieval, sentence selection, an d label prediction, which are three critical sub-tasks of claim verification. We evaluate our pipeline on SciFACT, a newly curated dataset that requires models to not just predict the veracity of claims but also provide relevant sentences from a corpus of scientific literature that support the prediction. Empirically, our system outperforms a strong baseline in each of the three sub-tasks. We further show VerT5erini's ability to generalize to two new datasets of COVID-19 claims using evidence from the CORD-19 corpus.
Natural language (NL) explanations of model predictions are gaining popularity as a means to understand and verify decisions made by large black-box pre-trained models, for tasks such as Question Answering (QA) and Fact Verification. Recently, pre-tr ained sequence to sequence (seq2seq) models have proven to be very effective in jointly making predictions, as well as generating NL explanations. However, these models have many shortcomings; they can fabricate explanations even for incorrect predictions, they are difficult to adapt to long input documents, and their training requires a large amount of labeled data. In this paper, we develop FiD-Ex, which addresses these shortcomings for seq2seq models by: 1) introducing sentence markers to eliminate explanation fabrication by encouraging extractive generation, 2) using the fusion-in-decoder architecture to handle long input contexts, and 3) intermediate fine-tuning on re-structured open domain QA datasets to improve few-shot performance. FiD-Ex significantly improves over prior work in terms of explanation metrics and task accuracy on five tasks from the ERASER explainability benchmark in both fully supervised and few-shot settings.
While neural networks produce state-of-the-art performance in several NLP tasks, they generally depend heavily on lexicalized information, which transfer poorly between domains. We present a combination of two strategies to mitigate this dependence o n lexicalized information in fact verification tasks. We present a data distillation technique for delexicalization, which we then combine with a model distillation method to prevent aggressive data distillation. We show that by using our solution, not only does the performance of an existing state-of-the-art model remain at par with that of the model trained on a fully lexicalized data, but it also performs better than it when tested out of domain. We show that the technique we present encourages models to extract transferable facts from a given fact verification dataset.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا