في حين أن الشبكات العصبية تنتج أداء حديثة في العديد من مهام NLP، إلا أنها تعتمد بشكل عام على المعلومات المعدنية، والتي تنقل بشكل سيئ بين المجالات.نقدم مزيجا من استراتيجيتين للتخفيف من هذا الاعتماد على المعلومات المعجمية في مهام التحقق من الواقع.نقدم تقنية تقطير البيانات إلى Delexicalization، والتي ندموعها مع طريقة تقطير نموذجية لمنع تقطير البيانات العدوانية.نظرا لأنه من خلال استخدام حلنا، لا يبقى أداء نموذج حالة حديثة موجود على قدم المساواة مع نموذج النموذج الذي تم تدريبه على بيانات متعمدة بالكامل، ولكنه يؤدي أيضا بشكل أفضل منه عند اختبارهنطاق.نظهر أن هذه التقنية التي نقدمها تشجع النماذج لاستخراج الحقائق القابلة للتحويل من مجموعة بيانات التحقق من حقيقة معين.
While neural networks produce state-of-the-art performance in several NLP tasks, they generally depend heavily on lexicalized information, which transfer poorly between domains. We present a combination of two strategies to mitigate this dependence on lexicalized information in fact verification tasks. We present a data distillation technique for delexicalization, which we then combine with a model distillation method to prevent aggressive data distillation. We show that by using our solution, not only does the performance of an existing state-of-the-art model remain at par with that of the model trained on a fully lexicalized data, but it also performs better than it when tested out of domain. We show that the technique we present encourages models to extract transferable facts from a given fact verification dataset.
References used
https://aclanthology.org/
Table-based fact verification task aims to verify whether the given statement is supported by the given semi-structured table. Symbolic reasoning with logical operations plays a crucial role in this task. Existing methods leverage programs that conta
This paper describes the system submitted in the SemEval-2021 Statement Verification and Evidence Finding with Tables task. The system relies on candidate generation for logical forms on the table based on keyword matching and dependency parsing on the claim statements.
Understanding tables is an important and relevant task that involves understanding table structure as well as being able to compare and contrast information within cells. In this paper, we address this challenge by presenting a new dataset and tasks
Throughout this research we will study the legal rules
governing the transferable letter of credit according to the
following plan:
The first chapter: The items of transferable letter of credit.
The second chapter: The mechanism of transferable letter of
credit.
In this paper, we propose a novel fact checking and verification system to check claims against Wikipedia content. Our system retrieves relevant Wikipedia pages using Anserini, uses BERT-large-cased question answering model to select correct evidence