Do you want to publish a course? Click here

Data and Model Distillation as a Solution for Domain-transferable Fact Verification

البيانات والتقطير النموذجي كحل للتحقق من الحقائق القابلة للتحويل عن المجال

546   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

While neural networks produce state-of-the-art performance in several NLP tasks, they generally depend heavily on lexicalized information, which transfer poorly between domains. We present a combination of two strategies to mitigate this dependence on lexicalized information in fact verification tasks. We present a data distillation technique for delexicalization, which we then combine with a model distillation method to prevent aggressive data distillation. We show that by using our solution, not only does the performance of an existing state-of-the-art model remain at par with that of the model trained on a fully lexicalized data, but it also performs better than it when tested out of domain. We show that the technique we present encourages models to extract transferable facts from a given fact verification dataset.



References used
https://aclanthology.org/
rate research

Read More

Table-based fact verification task aims to verify whether the given statement is supported by the given semi-structured table. Symbolic reasoning with logical operations plays a crucial role in this task. Existing methods leverage programs that conta in rich logical information to enhance the verification process. However, due to the lack of fully supervised signals in the program generation process, spurious programs can be derived and employed, which leads to the inability of the model to catch helpful logical operations. To address the aforementioned problems, in this work, we formulate the table-based fact verification task as an evidence retrieval and reasoning framework, proposing the Logic-level Evidence Retrieval and Graph-based Verification network (LERGV). Specifically, we first retrieve logic-level program-like evidence from the given table and statement as supplementary evidence for the table. After that, we construct a logic-level graph to capture the logical relations between entities and functions in the retrieved evidence, and design a graph-based verification network to perform logic-level graph-based reasoning based on the constructed graph to classify the final entailment relation. Experimental results on the large-scale benchmark TABFACT show the effectiveness of the proposed approach.
This paper describes the system submitted in the SemEval-2021 Statement Verification and Evidence Finding with Tables task. The system relies on candidate generation for logical forms on the table based on keyword matching and dependency parsing on the claim statements.
Understanding tables is an important and relevant task that involves understanding table structure as well as being able to compare and contrast information within cells. In this paper, we address this challenge by presenting a new dataset and tasks that addresses this goal in a shared task in SemEval 2020 Task 9: Fact Verification and Evidence Finding for Tabular Data in Scientific Documents (SEM-TAB-FACTS). Our dataset contains 981 manually-generated tables and an auto-generated dataset of 1980 tables providing over 180K statement and over 16M evidence annotations. SEM-TAB-FACTS featured two sub-tasks. In sub-task A, the goal was to determine if a statement is supported, refuted or unknown in relation to a table. In sub-task B, the focus was on identifying the specific cells of a table that provide evidence for the statement. 69 teams signed up to participate in the task with 19 successful submissions to subtask A and 12 successful submissions to subtask B. We present our results and main findings from the competition.
Throughout this research we will study the legal rules governing the transferable letter of credit according to the following plan: The first chapter: The items of transferable letter of credit. The second chapter: The mechanism of transferable letter of credit.
In this paper, we propose a novel fact checking and verification system to check claims against Wikipedia content. Our system retrieves relevant Wikipedia pages using Anserini, uses BERT-large-cased question answering model to select correct evidence , and verifies claims using XLNET natural language inference model by comparing it with the evidence. Table cell evidence is obtained through looking for entity-matching cell values and TAPAS table question answering model. The pipeline utilizes zero-shot capabilities of existing models and all the models used in the pipeline requires no additional training. Our system got a FEVEROUS score of 0.06 and a label accuracy of 0.39 in FEVEROUS challenge.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا