Do you want to publish a course? Click here

Claim Verification Using a Multi-GAN Based Model

المطالبة بالتحقق باستخدام نموذج متعدد الجنس

362   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This article describes research on claim verification carried out using a multiple GAN-based model. The proposed model consists of three pairs of generators and discriminators. The generator and discriminator pairs are responsible for generating synthetic data for supported and refuted claims and claim labels. A theoretical discussion about the proposed model is provided to validate the equilibrium state of the model. The proposed model is applied to the FEVER dataset, and a pre-trained language model is used for the input text data. The synthetically generated data helps to gain information that improves classification performance over state of the art baselines. The respective F1 scores after applying the proposed method on FEVER 1.0 and FEVER 2.0 datasets are 0.65+-0.018 and 0.65+-0.051.



References used
https://aclanthology.org/
rate research

Read More

Scientific claim verification can help the researchers to easily find the target scientific papers with the sentence evidence from a large corpus for the given claim. Some existing works propose pipeline models on the three tasks of abstract retrieva l, rationale selection and stance prediction. Such works have the problems of error propagation among the modules in the pipeline and lack of sharing valuable information among modules. We thus propose an approach, named as ARSJoint, that jointly learns the modules for the three tasks with a machine reading comprehension framework by including claim information. In addition, we enhance the information exchanges and constraints among tasks by proposing a regularization term between the sentence attention scores of abstract retrieval and the estimated outputs of rational selection. The experimental results on the benchmark dataset SciFact show that our approach outperforms the existing works.
Automatic fact verification has attracted recent research attention as the increasing dissemination of disinformation on social media platforms. The FEVEROUS shared task introduces a benchmark for fact verification, in which a system is challenged to verify the given claim using the extracted evidential elements from Wikipedia documents. In this paper, we propose our 3rd place three-stage system consisting of document retrieval, element retrieval, and verdict inference for the FEVEROUS shared task. By considering the context relevance in the fact extraction and verification task, our system achieves 0.29 FEVEROUS score on the development set and 0.25 FEVEROUS score on the blind test set, both outperforming the FEVEROUS baseline.
Understanding how news media frame political issues is important due to its impact on public attitudes, yet hard to automate. Computational approaches have largely focused on classifying the frame of a full news article while framing signals are ofte n subtle and local. Furthermore, automatic news analysis is a sensitive domain, and existing classifiers lack transparency in their predictions. This paper addresses both issues with a novel semi-supervised model, which jointly learns to embed local information about the events and related actors in a news article through an auto-encoding framework, and to leverage this signal for document-level frame classification. Our experiments show that: our model outperforms previous models of frame prediction; we can further improve performance with unlabeled training data leveraging the semi-supervised nature of our model; and the learnt event and actor embeddings intuitively corroborate the document-level predictions, providing a nuanced and interpretable article frame representation.
Knowledge graphs are essential for numerous downstream natural language processing applications, but are typically incomplete with many facts missing. This results in research efforts on multi-hop reasoning task, which can be formulated as a search p rocess and current models typically perform short distance reasoning. However, the long-distance reasoning is also vital with the ability to connect the superficially unrelated entities. To the best of our knowledge, there lacks a general framework that approaches multi-hop reasoning in mixed long-short distance reasoning scenarios. We argue that there are two key issues for a general multi-hop reasoning model: i) where to go, and ii) when to stop. Therefore, we propose a general model which resolves the issues with three modules: 1) the local-global knowledge module to estimate the possible paths, 2) the differentiated action dropout module to explore a diverse set of paths, and 3) the adaptive stopping search module to avoid over searching. The comprehensive results on three datasets demonstrate the superiority of our model with significant improvements against baselines in both short and long distance reasoning scenarios.
Dialect and standard language identification are crucial tasks for many Arabic natural language processing applications. In this paper, we present our deep learning-based system, submitted to the second NADI shared task for country-level and province -level identification of Modern Standard Arabic (MSA) and Dialectal Arabic (DA). The system is based on an end-to-end deep Multi-Task Learning (MTL) model to tackle both country-level and province-level MSA/DA identification. The latter MTL model consists of a shared Bidirectional Encoder Representation Transformers (BERT) encoder, two task-specific attention layers, and two classifiers. Our key idea is to leverage both the task-discriminative and the inter-task shared features for country and province MSA/DA identification. The obtained results show that our MTL model outperforms single-task models on most subtasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا