تضع الكشف عن الشائعات على وسائل التواصل الاجتماعي نماذج لغة مدربة مسبقا (LMS)، مثل Bert، والميزات المساعدة، مثل التعليقات، قيد الاستخدام. ومع ذلك، من ناحية، فإن مجموعات بيانات الكشف عن الشائعات في الشركات الصينية مع تعليقات نادرة؛ من ناحية أخرى، فإن التفاعل المكثف من الاهتمام على النماذج القائمة على المحولات مثل بيرت قد يعيق تحسين الأداء. لتخفيف هذه المشاكل، نبني مجموعة بيانات جديدة من المدونات الصغيرة الصينية تسمى Weibo20 من خلال جمع الوظائف والتعليقات المرتبطة بها من سينا ويبو واقترح فرقة جديدة تسمى Stanker (Bracking Network بناء على الانتباه ملثمين). تتبنى Stanker نماذج برت ملثمين من اهتمامات اثنين من المحبوسين على مستوى تشفير قاعدة. على عكس الخطابة الأصلية، يتخذ نموذج LGAM-Bert الجديد الخاص بنا تعليقات كملفات مساعدة مهمة ويعتد على الانتباه بين الوظائف والتعليقات على الطبقات المنخفضة. أظهرت التجارب على Weibo20 وثلاث مجموعات بيانات وسائل التواصل الاجتماعي الحالية أن الستائر تفوقت على جميع النماذج المقارنة، وخاصة ضرب الدولة القديمة في مجموعة بيانات Weibo.
Rumor detection on social media puts pre-trained language models (LMs), such as BERT, and auxiliary features, such as comments, into use. However, on the one hand, rumor detection datasets in Chinese companies with comments are rare; on the other hand, intensive interaction of attention on Transformer-based models like BERT may hinder performance improvement. To alleviate these problems, we build a new Chinese microblog dataset named Weibo20 by collecting posts and associated comments from Sina Weibo and propose a new ensemble named STANKER (Stacking neTwork bAsed-on atteNtion-masKed BERT). STANKER adopts two level-grained attention-masked BERT (LGAM-BERT) models as base encoders. Unlike the original BERT, our new LGAM-BERT model takes comments as important auxiliary features and masks co-attention between posts and comments on lower-layers. Experiments on Weibo20 and three existing social media datasets showed that STANKER outperformed all compared models, especially beating the old state-of-the-art on Weibo dataset.
References used
https://aclanthology.org/
Stance detection on social media can help to identify and understand slanted news or commentary in everyday life. In this work, we propose a new model for zero-shot stance detection on Twitter that uses adversarial learning to generalize across topic
Rumor spreaders are increasingly utilizing multimedia content to attract the attention and trust of news consumers. Though a set of rumor detection models have exploited the multi-modal data, they seldom consider the inconsistent relationships among
Language use differs between domains and even within a domain, language use changes over time. For pre-trained language models like BERT, domain adaptation through continued pre-training has been shown to improve performance on in-domain downstream t
Nowadays, there are a lot of advertisements hiding as normal posts or experience sharing in social media. There is little research of advertorial detection on Mandarin Chinese texts. This paper thus aimed to focus on hidden advertorial detection of o
Abstract Much previous work characterizing language variation across Internet social groups has focused on the types of words used by these groups. We extend this type of study by employing BERT to characterize variation in the senses of words as wel