Do you want to publish a course? Click here

Temporal Adaptation of BERT and Performance on Downstream Document Classification: Insights from Social Media

التكيف الزمني بيرت والأداء في تصنيف المستند المصب: رؤى من وسائل التواصل الاجتماعي

364   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Language use differs between domains and even within a domain, language use changes over time. For pre-trained language models like BERT, domain adaptation through continued pre-training has been shown to improve performance on in-domain downstream tasks. In this article, we investigate whether temporal adaptation can bring additional benefits. For this purpose, we introduce a corpus of social media comments sampled over three years. It contains unlabelled data for adaptation and evaluation on an upstream masked language modelling task as well as labelled data for fine-tuning and evaluation on a downstream document classification task. We find that temporality matters for both tasks: temporal adaptation improves upstream and temporal fine-tuning downstream task performance. Time-specific models generally perform better on past than on future test sets, which matches evidence on the bursty usage of topical words. However, adapting BERT to time and domain does not improve performance on the downstream task over only adapting to domain. Token-level analysis shows that temporal adaptation captures event-driven changes in language use in the downstream task, but not those changes that are actually relevant to task performance. Based on our findings, we discuss when temporal adaptation may be more effective.



References used
https://aclanthology.org/
rate research

Read More

Given the current social distancing regulations across the world, social media has become the primary mode of communication for most people. This has isolated millions suffering from mental illnesses who are unable to receive assistance in person. Th ey have increasingly turned to online platforms to express themselves and to look for guidance in dealing with their illnesses. Keeping this in mind, we propose a solution to classify mental illness posts on social media thereby enabling users to seek appropriate help. In this work, we classify five prominent kinds of mental illnesses- depression, anxiety, bipolar disorder, ADHD and PTSD by analyzing unstructured user data on Reddit. In addition, we share a new high-quality dataset1 to drive research on this topic. The dataset consists of the title and post texts from 17159 posts and 13 subreddits each associated with one of the five mental illnesses listed above or a None class indicating the absence of any mental illness. Our model is trained on Reddit data but is easily extensible to other social media platforms as well as demonstrated in our results.We believe that our work is the first multi-class model that uses a Transformer based architecture such as RoBERTa to analyze people's emotions and psychology. We also demonstrate how we stress test our model using behavioral testing. Our dataset is publicly available and we encourage researchers to utilize this to advance research in this arena. We hope that this work contributes to the public health system by automating some of the detection process and alerting relevant authorities about users that need immediate help.
Abstract Much previous work characterizing language variation across Internet social groups has focused on the types of words used by these groups. We extend this type of study by employing BERT to characterize variation in the senses of words as wel l, analyzing two months of English comments in 474 Reddit communities. The specificity of different sense clusters to a community, combined with the specificity of a community's unique word types, is used to identify cases where a social group's language deviates from the norm. We validate our metrics using user-created glossaries and draw on sociolinguistic theories to connect language variation with trends in community behavior. We find that communities with highly distinctive language are medium-sized, and their loyal and highly engaged users interact in dense networks.
Mental health is getting more and more attention recently, depression being a very common illness nowadays, but also other disorders like anxiety, obsessive-compulsive disorders, feeding disorders, autism, or attention-deficit/hyperactivity disorders . The huge amount of data from social media and the recent advances of deep learning models provide valuable means to automatically detecting mental disorders from plain text. In this article, we experiment with state-of-the-art methods on the SMHD mental health conditions dataset from Reddit (Cohan et al., 2018). Our contribution is threefold: using a dataset consisting of more illnesses than most studies, focusing on general text rather than mental health support groups and classification by posts rather than individuals or groups. For the automatic classification of the diseases, we employ three deep learning models: BERT, RoBERTa and XLNET. We double the baseline established by Cohan et al. (2018), on just a sample of their dataset. We improve the results obtained by Jiang et al. (2020) on post-level classification. The accuracy obtained by the eating disorder classifier is the highest due to the pregnant presence of discussions related to calories, diets, recipes etc., whereas depression had the lowest F1 score, probably because depression is more difficult to identify in linguistic acts.
Rumor detection on social media puts pre-trained language models (LMs), such as BERT, and auxiliary features, such as comments, into use. However, on the one hand, rumor detection datasets in Chinese companies with comments are rare; on the other han d, intensive interaction of attention on Transformer-based models like BERT may hinder performance improvement. To alleviate these problems, we build a new Chinese microblog dataset named Weibo20 by collecting posts and associated comments from Sina Weibo and propose a new ensemble named STANKER (Stacking neTwork bAsed-on atteNtion-masKed BERT). STANKER adopts two level-grained attention-masked BERT (LGAM-BERT) models as base encoders. Unlike the original BERT, our new LGAM-BERT model takes comments as important auxiliary features and masks co-attention between posts and comments on lower-layers. Experiments on Weibo20 and three existing social media datasets showed that STANKER outperformed all compared models, especially beating the old state-of-the-art on Weibo dataset.
Existing work on automated hate speech classification assumes that the dataset is fixed and the classes are pre-defined. However, the amount of data in social media increases every day, and the hot topics changes rapidly, requiring the classifiers to be able to continuously adapt to new data without forgetting the previously learned knowledge. This ability, referred to as lifelong learning, is crucial for the real-word application of hate speech classifiers in social media. In this work, we propose lifelong learning of hate speech classification on social media. To alleviate catastrophic forgetting, we propose to use Variational Representation Learning (VRL) along with a memory module based on LB-SOINN (Load-Balancing Self-Organizing Incremental Neural Network). Experimentally, we show that combining variational representation learning and the LB-SOINN memory module achieves better performance than the commonly-used lifelong learning techniques.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا