Do you want to publish a course? Click here

Inconsistency Matters: A Knowledge-guided Dual-inconsistency Network for Multi-modal Rumor Detection

المسائل التناسلية: شبكة غير متناسلة الموجهة للمعرفة للكشف عن الشائعات متعددة الوسائط

349   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Rumor spreaders are increasingly utilizing multimedia content to attract the attention and trust of news consumers. Though a set of rumor detection models have exploited the multi-modal data, they seldom consider the inconsistent relationships among images and texts. Moreover, they also fail to find a powerful way to spot the inconsistency information among the post contents and background knowledge. Motivated by the intuition that rumors are more likely to have inconsistency information in semantics, a novel Knowledge-guided Dual-inconsistency network is proposed to detect rumors with multimedia contents. It can capture the inconsistent semantics at the cross-modal level and the content-knowledge level in one unified framework. Extensive experiments on two public real-world datasets demonstrate that our proposal can outperform the state-of-the-art baselines.

References used
https://aclanthology.org/
rate research

Read More

Rumor detection on social media puts pre-trained language models (LMs), such as BERT, and auxiliary features, such as comments, into use. However, on the one hand, rumor detection datasets in Chinese companies with comments are rare; on the other han d, intensive interaction of attention on Transformer-based models like BERT may hinder performance improvement. To alleviate these problems, we build a new Chinese microblog dataset named Weibo20 by collecting posts and associated comments from Sina Weibo and propose a new ensemble named STANKER (Stacking neTwork bAsed-on atteNtion-masKed BERT). STANKER adopts two level-grained attention-masked BERT (LGAM-BERT) models as base encoders. Unlike the original BERT, our new LGAM-BERT model takes comments as important auxiliary features and masks co-attention between posts and comments on lower-layers. Experiments on Weibo20 and three existing social media datasets showed that STANKER outperformed all compared models, especially beating the old state-of-the-art on Weibo dataset.
Aspect terms extraction (ATE) and aspect sentiment classification (ASC) are two fundamental and fine-grained sub-tasks in aspect-level sentiment analysis (ALSA). In the textual analysis, joint extracting both aspect terms and sentiment polarities has been drawn much attention due to the better applications than individual sub-task. However, in the multi-modal scenario, the existing studies are limited to handle each sub-task independently, which fails to model the innate connection between the above two objectives and ignores the better applications. Therefore, in this paper, we are the first to jointly perform multi-modal ATE (MATE) and multi-modal ASC (MASC), and we propose a multi-modal joint learning approach with auxiliary cross-modal relation detection for multi-modal aspect-level sentiment analysis (MALSA). Specifically, we first build an auxiliary text-image relation detection module to control the proper exploitation of visual information. Second, we adopt the hierarchical framework to bridge the multi-modal connection between MATE and MASC, as well as separately visual guiding for each sub module. Finally, we can obtain all aspect-level sentiment polarities dependent on the jointly extracted specific aspects. Extensive experiments show the effectiveness of our approach against the joint textual approaches, pipeline and collapsed multi-modal approaches.
With the early success of query-answer assistants such as Alexa and Siri, research attempts to expand system capabilities of handling service automation are now abundant. However, preliminary systems have quickly found the inadequacy in relying on si mple classification techniques to effectively accomplish the automation task. The main challenge is that the dialogue often involves complexity in user's intents (or purposes) which are multiproned, subject to spontaneous change, and difficult to track. Furthermore, public datasets have not considered these complications and the general semantic annotations are lacking which may result in zero-shot problem. Motivated by the above, we propose a Label-Aware BERT Attention Network (LABAN) for zero-shot multi-intent detection. We first encode input utterances with BERT and construct a label embedded space by considering embedded semantics in intent labels. An input utterance is then classified based on its projection weights on each intent embedding in this embedded space. We show that it successfully extends to few/zero-shot setting where part of intent labels are unseen in training data, by also taking account of semantics in these unseen intent labels. Experimental results show that our approach is capable of detecting many unseen intent labels correctly. It also achieves the state-of-the-art performance on five multi-intent datasets in normal cases.
Relation detection in knowledge base question answering, aims to identify the path(s) of relations starting from the topic entity node that is linked to the answer node in knowledge graph. Such path might consist of multiple relations, which we call multi-hop. Moreover, for a single question, there may exist multiple relation paths to the correct answer, which we call multi-label. However, most of existing approaches only detect one single path to obtain the answer without considering other correct paths, which might affect the final performance. Therefore, in this paper, we propose a novel divide-and-conquer approach for multi-label multi-hop relation detection (DC-MLMH) by decomposing it into head relation detection and conditional relation path generation. In specific, a novel path sampling mechanism is proposed to generate diverse relation paths for the inference stage. A majority-vote policy is employed to detect final KB answer. Comprehensive experiments were conducted on the FreebaseQA benchmark dataset. Experimental results show that the proposed approach not only outperforms other competitive multi-label baselines, but also has superiority over some state-of-art KBQA methods.
Abstract Prior studies in multilingual language modeling (e.g., Cotterell et al., 2018; Mielke et al., 2019) disagree on whether or not inflectional morphology makes languages harder to model. We attempt to resolve the disagreement and extend those s tudies. We compile a larger corpus of 145 Bible translations in 92 languages and a larger number of typological features.1 We fill in missing typological data for several languages and consider corpus-based measures of morphological complexity in addition to expert-produced typological features. We find that several morphological measures are significantly associated with higher surprisal when LSTM models are trained with BPE-segmented data. We also investigate linguistically motivated subword segmentation strategies like Morfessor and Finite-State Transducers (FSTs) and find that these segmentation strategies yield better performance and reduce the impact of a language's morphology on language modeling.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا