الطريقة التي يتم إنشاؤها ونشرها قد تغيرت بشكل كبير خلال العقد الماضي.إن تحديد المنظور السياسي يشكل طريقة مناقشة الأحداث المناقشة في وسائل الإعلام أكثر أهمية بسبب الزيادة الحادة في عدد منافذ الأخبار والمقالات.الأساليب السابقة عادة ما تستفيد فقط المعلومات اللغوية.ومع ذلك، فإن المقالات الإخبارية تحاول الحفاظ على المصداقية ويبدو أنها محايدة.لذلك، يتم تقديم التحيز بطرق خفية، عادة من خلال التركيز على جوانب مختلفة من القصة.في هذه الورقة، نقترح إطارا جديدا يعتبر الكيانات المذكريات في المقالات الإخبارية والمعرفة الخارجية بها، مما أسفر عن التحيز فيما يتعلق بهذه الكيانات.نستكشف طرق مختلفة لحقن معلومات الكيان في نموذج النص.تظهر التجارب أن إطار عملنا المقترح يحقق تحسينات كبيرة على النماذج النصية القياسية، وهو قادر على تحديد الفرق في روايات الأخبار مع وجهات نظر مختلفة.
The way information is generated and disseminated has changed dramatically over the last decade. Identifying the political perspective shaping the way events are discussed in the media becomes more important due to the sharp increase in the number of news outlets and articles. Previous approaches usually only leverage linguistic information. However, news articles attempt to maintain credibility and seem impartial. Therefore, bias is introduced in subtle ways, usually by emphasizing different aspects of the story. In this paper, we propose a novel framework that considers entities mentioned in news articles and external knowledge about them, capturing the bias with respect to those entities. We explore different ways to inject entity information into the text model. Experiments show that our proposed framework achieves significant improvements over the standard text models, and is capable of identifying the difference in news narratives with different perspectives.
References used
https://aclanthology.org/
With the early success of query-answer assistants such as Alexa and Siri, research attempts to expand system capabilities of handling service automation are now abundant. However, preliminary systems have quickly found the inadequacy in relying on si
Rumor detection on social media puts pre-trained language models (LMs), such as BERT, and auxiliary features, such as comments, into use. However, on the one hand, rumor detection datasets in Chinese companies with comments are rare; on the other han
We propose MultiOpEd, an open-domain news editorial corpus that supports various tasks pertaining to the argumentation structure in news editorials, focusing on automatic perspective discovery. News editorial is a genre of persuasive text, where the
We propose a novel framework for predicting the factuality of reporting of news media outlets by studying the user attention cycles in their YouTube channels. In particular, we design a rich set of features derived from the temporal evolution of the
Joint entity and relation extraction is challenging due to the complex interaction of interaction between named entity recognition and relation extraction. Although most existing works tend to jointly train these two tasks through a shared network, t