للتخفيف من ندرة التسمية في مهمة التعرف على الكيان المسمى (NER)، يتم تطبيق أساليب NER التي أشرف بشكل كبير على نطاق واسع على البيانات التسمية تلقائيا وتحديد الكيانات.على الرغم من انخفاض الجهود البشرية، فإن التعليقات التوضيحية غير المكتملة والصعار الناتجة تشكل تحديات جديدة لتعلم النماذج العصبية الفعالة.في هذه الورقة، نقترح طريقة تمديد القاموس الرواية التي تستخرج كيانات جديدة من خلال النموذج الموسع من النوع.علاوة على ذلك، نقوم بتصميم شبكة تدرك حدود متعددة التحبيب التي تكتشف حدود الكيان من وجهات النظر المحلية والعالمية.نقوم بإجراء تجارب على أنواع مختلفة من مجموعات البيانات، تظهر النتائج أن طرازنا تتفوق على الأنظمة السابقة للإشراف المستمرة، وحتى تجاوز النماذج الخاضعة للإشراف.
To alleviate label scarcity in Named Entity Recognition (NER) task, distantly supervised NER methods are widely applied to automatically label data and identify entities. Although the human effort is reduced, the generated incomplete and noisy annotations pose new challenges for learning effective neural models. In this paper, we propose a novel dictionary extension method which extracts new entities through the type expanded model. Moreover, we design a multi-granularity boundary-aware network which detects entity boundaries from both local and global perspectives. We conduct experiments on different types of datasets, the results show that our model outperforms previous state-of-the-art distantly supervised systems and even surpasses the supervised models.
References used
https://aclanthology.org/
Current work in named entity recognition (NER) shows that data augmentation techniques can produce more robust models. However, most existing techniques focus on augmenting in-domain data in low-resource scenarios where annotated data is quite limite
Nested Named Entity Recognition (NNER) has been extensively studied, aiming to identify all nested entities from potential spans (i.e., one or more continuous tokens). However, recent studies for NNER either focus on tedious tagging schemas or utiliz
Abstract We take a step towards addressing the under- representation of the African continent in NLP research by bringing together different stakeholders to create the first large, publicly available, high-quality dataset for named entity recognition
Abstract In this work, we examine the ability of NER models to use contextual information when predicting the type of an ambiguous entity. We introduce NRB, a new testbed carefully designed to diagnose Name Regularity Bias of NER models. Our results
Abstract We study learning named entity recognizers in the presence of missing entity annotations. We approach this setting as tagging with latent variables and propose a novel loss, the Expected Entity Ratio, to learn models in the presence of syste