Do you want to publish a course? Click here

TEBNER: Domain Specific Named Entity Recognition with Type Expanded Boundary-aware Network

Tebner: التعرف على الكيان المحدد للمجال مع شبكة توسيع نطاق الشبكة

217   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

To alleviate label scarcity in Named Entity Recognition (NER) task, distantly supervised NER methods are widely applied to automatically label data and identify entities. Although the human effort is reduced, the generated incomplete and noisy annotations pose new challenges for learning effective neural models. In this paper, we propose a novel dictionary extension method which extracts new entities through the type expanded model. Moreover, we design a multi-granularity boundary-aware network which detects entity boundaries from both local and global perspectives. We conduct experiments on different types of datasets, the results show that our model outperforms previous state-of-the-art distantly supervised systems and even surpasses the supervised models.



References used
https://aclanthology.org/
rate research

Read More

Current work in named entity recognition (NER) shows that data augmentation techniques can produce more robust models. However, most existing techniques focus on augmenting in-domain data in low-resource scenarios where annotated data is quite limite d. In this work, we take this research direction to the opposite and study cross-domain data augmentation for the NER task. We investigate the possibility of leveraging data from high-resource domains by projecting it into the low-resource domains. Specifically, we propose a novel neural architecture to transform the data representation from a high-resource to a low-resource domain by learning the patterns (e.g. style, noise, abbreviations, etc.) in the text that differentiate them and a shared feature space where both domains are aligned. We experiment with diverse datasets and show that transforming the data to the low-resource domain representation achieves significant improvements over only using data from high-resource domains.
Nested Named Entity Recognition (NNER) has been extensively studied, aiming to identify all nested entities from potential spans (i.e., one or more continuous tokens). However, recent studies for NNER either focus on tedious tagging schemas or utiliz e complex structures, which fail to learn effective span representations from the input sentence with highly nested entities. Intuitively, explicit span representations will contribute to NNER due to the rich context information they contain. In this study, we propose a Hierarchical Transformer (HiTRANS) network for the NNER task, which decomposes the input sentence into multi-grained spans and enhances the representation learning in a hierarchical manner. Specifically, we first utilize a two-phase module to generate span representations by aggregating context information based on a bottom-up and top-down transformer network. Then a label prediction layer is designed to recognize nested entities hierarchically, which naturally explores semantic dependencies among different spans. Experiments on GENIA, ACE-2004, ACE-2005 and NNE datasets demonstrate that our proposed method achieves much better performance than the state-of-the-art approaches.
Abstract We take a step towards addressing the under- representation of the African continent in NLP research by bringing together different stakeholders to create the first large, publicly available, high-quality dataset for named entity recognition (NER) in ten African languages. We detail the characteristics of these languages to help researchers and practitioners better understand the challenges they pose for NER tasks. We analyze our datasets and conduct an extensive empirical evaluation of state- of-the-art methods across both supervised and transfer learning settings. Finally, we release the data, code, and models to inspire future research on African NLP.1
Abstract In this work, we examine the ability of NER models to use contextual information when predicting the type of an ambiguous entity. We introduce NRB, a new testbed carefully designed to diagnose Name Regularity Bias of NER models. Our results indicate that all state-of-the-art models we tested show such a bias; BERT fine-tuned models significantly outperforming feature-based (LSTM-CRF) ones on NRB, despite having comparable (sometimes lower) performance on standard benchmarks. To mitigate this bias, we propose a novel model-agnostic training method that adds learnable adversarial noise to some entity mentions, thus enforcing models to focus more strongly on the contextual signal, leading to significant gains on NRB. Combining it with two other training strategies, data augmentation and parameter freezing, leads to further gains.
Abstract We study learning named entity recognizers in the presence of missing entity annotations. We approach this setting as tagging with latent variables and propose a novel loss, the Expected Entity Ratio, to learn models in the presence of syste matically missing tags. We show that our approach is both theoretically sound and empirically useful. Experimentally, we find that it meets or exceeds performance of strong and state-of-the-art baselines across a variety of languages, annotation scenarios, and amounts of labeled data. In particular, we find that it significantly outperforms the previous state-of-the-art methods from Mayhew et al. (2019) and Li et al. (2021) by +12.7 and +2.3 F1 score in a challenging setting with only 1,000 biased annotations, averaged across 7 datasets. We also show that, when combined with our approach, a novel sparse annotation scheme outperforms exhaustive annotation for modest annotation budgets.1

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا