الشبكات العصبية العميقة لمعالجة اللغات الطبيعية هشة في مواجهة أمثلة الخصومة --- اضطرابات صغيرة في الإدخال، مثل استبدال مرادف أو تكرار Word، والذي يسبب شبكة عصبية لتغيير تنبؤها.نقدم نهجا لإنشاء متانة LSTMS (وملحقات LSTMS) ونماذج التدريب التي يمكن اعتمادها بكفاءة.يمكن أن تؤدي نهجنا إلى التصديق على المتانة على أماكن الاضطرابات الكبيرة غير المحددة برمجيا بلغة تحويلات السلسلة.يوضح تقييمنا أن نهجنا يمكن أن تدريب النماذج الأكثر قوة لمجموعات من تحويلات السلسلة من تلك التي تم إنتاجها باستخدام التقنيات الحالية؛(2) نهجنا يمكن أن تظهر دقة شهادة عالية من النماذج الناتجة.
Deep neural networks for natural language processing are fragile in the face of adversarial examples---small input perturbations, like synonym substitution or word duplication, which cause a neural network to change its prediction. We present an approach to certifying the robustness of LSTMs (and extensions of LSTMs) and training models that can be efficiently certified. Our approach can certify robustness to intractably large perturbation spaces defined programmatically in a language of string transformations. Our evaluation shows that (1) our approach can train models that are more robust to combinations of string transformations than those produced using existing techniques; (2) our approach can show high certification accuracy of the resulting models.
References used
https://aclanthology.org/
The robustness and security of natural language processing (NLP) models are significantly important in real-world applications. In the context of text classification tasks, adversarial examples can be designed by substituting words with synonyms unde
Seq2seq models have demonstrated their incredible effectiveness in a large variety of applications. However, recent research has shown that inappropriate language in training samples and well-designed testing cases can induce seq2seq models to output
This paper presents one of the most accurate, stable and fast to response advanced control system (PROPORTIONAL INTEGRAL DIFFERENTIAL CONTROL SYSTEM), which considered one of the special cases of closed loop control systems. Also, display and compare
Many modern messaging systems allow fast and synchronous textual communication among many users. The resulting sequence of messages hides a more complicated structure in which independent sub-conversations are interwoven with one another. This poses
Humans often employ figurative language use in communication, including during interactions with dialog systems. Thus, it is important for real-world dialog systems to be able to handle popular figurative language constructs like metaphor and simile.