Do you want to publish a course? Click here

Deep neural networks for natural language processing are fragile in the face of adversarial examples---small input perturbations, like synonym substitution or word duplication, which cause a neural network to change its prediction. We present an appr oach to certifying the robustness of LSTMs (and extensions of LSTMs) and training models that can be efficiently certified. Our approach can certify robustness to intractably large perturbation spaces defined programmatically in a language of string transformations. Our evaluation shows that (1) our approach can train models that are more robust to combinations of string transformations than those produced using existing techniques; (2) our approach can show high certification accuracy of the resulting models.
Pre-trained LMs have shown impressive performance on downstream NLP tasks, but we have yet to establish a clear understanding of their sophistication when it comes to processing, retaining, and applying information presented in their input. In this p aper we tackle a component of this question by examining robustness of models' ability to deploy relevant context information in the face of distracting content. We present models with cloze tasks requiring use of critical context information, and introduce distracting content to test how robustly the models retain and use that critical information for prediction. We also systematically manipulate the nature of these distractors, to shed light on dynamics of models' use of contextual cues. We find that although models appear in simple contexts to make predictions based on understanding and applying relevant facts from prior context, the presence of distracting but irrelevant content has clear impact in confusing model predictions. In particular, models appear particularly susceptible to factors of semantic similarity and word position. The findings are consistent with the conclusion that LM predictions are driven in large part by superficial contextual cues, rather than by robust representations of context meaning.
In this work, we analyze the robustness of neural machine translation systems towards grammatical perturbations in the source. In particular, we focus on morphological inflection related perturbations. While this has been recently studied for English →French (MORPHEUS) (Tan et al., 2020), it is unclear how this extends to Any→English translation systems. We propose MORPHEUS-MULTILINGUAL that utilizes UniMorph dictionaries to identify morphological perturbations to source that adversely affect the translation models. Along with an analysis of state-of-the-art pretrained MT systems, we train and analyze systems for 11 language pairs using the multilingual TED corpus (Qi et al., 2018). We also compare this to actual errors of non-native speakers using Grammatical Error Correction datasets. Finally, we present a qualitative and quantitative analysis of the robustness of Any→English translation systems.
We address the problem of enhancing model robustness through regularization. Specifically, we focus on methods that regularize the model posterior difference between clean and noisy inputs. Theoretically, we provide a connection of two recent methods , Jacobian Regularization and Virtual Adversarial Training, under this framework. Additionally, we generalize the posterior differential regularization to the family of f-divergences and characterize the overall framework in terms of the Jacobian matrix. Empirically, we compare those regularizations and standard BERT training on a diverse set of tasks to provide a comprehensive profile of their effect on model generalization. For both fully supervised and semi-supervised settings, we show that regularizing the posterior difference with f-divergence can result in well-improved model robustness. In particular, with a proper f-divergence, a BERT-base model can achieve comparable generalization as its BERT-large counterpart for in-domain, adversarial and domain shift scenarios, indicating the great potential of the proposed framework for enhancing NLP model robustness.
The robustness and security of natural language processing (NLP) models are significantly important in real-world applications. In the context of text classification tasks, adversarial examples can be designed by substituting words with synonyms unde r certain semantic and syntactic constraints, such that a well-trained model will give a wrong prediction. Therefore, it is crucial to develop techniques to provide a rigorous and provable robustness guarantee against such attacks. In this paper, we propose WordDP to achieve certified robustness against word substitution at- tacks in text classification via differential privacy (DP). We establish the connection between DP and adversarial robustness for the first time in the text domain and propose a conceptual exponential mechanism-based algorithm to formally achieve the robustness. We further present a practical simulated exponential mechanism that has efficient inference with certified robustness. We not only provide a rigorous analytic derivation of the certified condition but also experimentally compare the utility of WordDP with existing defense algorithms. The results show that WordDP achieves higher accuracy and more than 30X efficiency improvement over the state-of-the-art certified robustness mechanism in typical text classification tasks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا