Do you want to publish a course? Click here

Explaining Errors in Machine Translation with Absolute Gradient Ensembles

شرح الأخطاء في الترجمة الآلية مع مجموعات التدرج المطلقة

674   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Current research on quality estimation of machine translation focuses on the sentence-level quality of the translations. By using explainability methods, we can use these quality estimations for word-level error identification. In this work, we compare different explainability techniques and investigate gradient-based and perturbation-based methods by measuring their performance and required computational efforts. Throughout our experiments, we observed that using absolute word scores boosts the performance of gradient-based explainers significantly. Further, we combine explainability methods to ensembles to exploit the strengths of individual explainers to get better explanations. We propose the usage of absolute gradient-based methods. These work comparably well to popular perturbation-based ones while being more time-efficient.



References used
https://aclanthology.org/
rate research

Read More

The paper presents experiments in neural machine translation with lexical constraints into a morphologically rich language. In particular and we introduce a method and based on constrained decoding and which handles the inflected forms of lexical ent ries and does not require any modification to the training data or model architecture. To evaluate its effectiveness and we carry out experiments in two different scenarios: general and domain-specific. We compare our method with baseline translation and i.e. translation without lexical constraints and in terms of translation speed and translation quality. To evaluate how well the method handles the constraints and we propose new evaluation metrics which take into account the presence and placement and duplication and inflectional correctness of lexical terms in the output sentence.
Machine translation usually relies on parallel corpora to provide parallel signals for training. The advent of unsupervised machine translation has brought machine translation away from this reliance, though performance still lags behind traditional supervised machine translation. In unsupervised machine translation, the model seeks symmetric language similarities as a source of weak parallel signal to achieve translation. Chomsky's Universal Grammar theory postulates that grammar is an innate form of knowledge to humans and is governed by universal principles and constraints. Therefore, in this paper, we seek to leverage such shared grammar clues to provide more explicit language parallel signals to enhance the training of unsupervised machine translation models. Through experiments on multiple typical language pairs, we demonstrate the effectiveness of our proposed approaches.
We present work on summarising deliberative processes for non-English languages. Unlike commonly studied datasets, such as news articles, this deliberation dataset reflects difficulties of combining multiple narratives, mostly of poor grammatical qua lity, in a single text. We report an extensive evaluation of a wide range of abstractive summarisation models in combination with an off-the-shelf machine translation model. Texts are translated into English, summarised, and translated back to the original language. We obtain promising results regarding the fluency, consistency and relevance of the summaries produced. Our approach is easy to implement for many languages for production purposes by simply changing the translation model.
Neural Machine Translation (NMT) approaches employing monolingual data are showing steady improvements in resource-rich conditions. However, evaluations using real-world lowresource languages still result in unsatisfactory performance. This work prop oses a novel zeroshot NMT modeling approach that learns without the now-standard assumption of a pivot language sharing parallel data with the zero-shot source and target languages. Our approach is based on three stages: initialization from any pre-trained NMT model observing at least the target language, augmentation of source sides leveraging target monolingual data, and learning to optimize the initial model to the zero-shot pair, where the latter two constitute a selflearning cycle. Empirical findings involving four diverse (in terms of a language family, script and relatedness) zero-shot pairs show the effectiveness of our approach with up to +5.93 BLEU improvement against a supervised bilingual baseline. Compared to unsupervised NMT, consistent improvements are observed even in a domain-mismatch setting, attesting to the usability of our method.
This paper discusses a classification-based approach to machine translation evaluation, as opposed to a common regression-based approach in the WMT Metrics task. Recent machine translation usually works well but sometimes makes critical errors due to just a few wrong word choices. Our classification-based approach focuses on such errors using several error type labels, for practical machine translation evaluation in an age of neural machine translation. We made additional annotations on the WMT 2015-2017 Metrics datasets with fluency and adequacy labels to distinguish different types of translation errors from syntactic and semantic viewpoints. We present our human evaluation criteria for the corpus development and automatic evaluation experiments using the corpus. The human evaluation corpus will be publicly available upon publication.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا