يركز البحث الحالي على تقدير الجودة لجهاز الترجمة الآلية على جودة الجملة للترجمات.باستخدام أساليب الشرح، يمكننا استخدام تقديرات الجودة هذه لتحديد خطأ مستوى Word على مستوى Word.في هذا العمل، نقارن تقنيات الشرح المختلفة والتحقيق في الأساليب القائمة على التدرج والقائم على الاضطرابات عن طريق قياس أدائها وجهود حسابية مطلوبة.في جميع تجاربنا، لاحظنا أن استخدام درجات الكلمة المطلقة يعزز أداء المشرفين المستند إلى التدرج بشكل كبير.علاوة على ذلك، نجمع بين طرق الشرح لفرق استغلال نقاط القوة في الأشرار الفردية للحصول على تفسيرات أفضل.نقترح استخدام الأساليب القائمة على التدرج المطلق.هذه العمل بشكل جيد
Current research on quality estimation of machine translation focuses on the sentence-level quality of the translations. By using explainability methods, we can use these quality estimations for word-level error identification. In this work, we compare different explainability techniques and investigate gradient-based and perturbation-based methods by measuring their performance and required computational efforts. Throughout our experiments, we observed that using absolute word scores boosts the performance of gradient-based explainers significantly. Further, we combine explainability methods to ensembles to exploit the strengths of individual explainers to get better explanations. We propose the usage of absolute gradient-based methods. These work comparably well to popular perturbation-based ones while being more time-efficient.
References used
https://aclanthology.org/
The paper presents experiments in neural machine translation with lexical constraints into a morphologically rich language. In particular and we introduce a method and based on constrained decoding and which handles the inflected forms of lexical ent
Machine translation usually relies on parallel corpora to provide parallel signals for training. The advent of unsupervised machine translation has brought machine translation away from this reliance, though performance still lags behind traditional
We present work on summarising deliberative processes for non-English languages. Unlike commonly studied datasets, such as news articles, this deliberation dataset reflects difficulties of combining multiple narratives, mostly of poor grammatical qua
Neural Machine Translation (NMT) approaches employing monolingual data are showing steady improvements in resource-rich conditions. However, evaluations using real-world lowresource languages still result in unsatisfactory performance. This work prop
This paper discusses a classification-based approach to machine translation evaluation, as opposed to a common regression-based approach in the WMT Metrics task. Recent machine translation usually works well but sometimes makes critical errors due to