نقدم العمل في تلخيص عمليات تداول لغات غير الإنجليزية.على عكس مجموعات البيانات التي تمت دراستها شائعة، مثل المقالات الإخبارية، تعكس مجموعة بيانات التدوين هذه صعوبات الجمع بين روايات متعددة، معظمها من الجودة النحوية الفقراء، في نص واحد.نقوم بالإبلاغ عن تقييم شامل لمجموعة واسعة من نماذج التلخيص المبادرة بالاشتراك مع نموذج الترجمة الآلي خارج الرف.ترجم النصوص إلى اللغة الإنجليزية، وتمخيصها، وترجمت إلى اللغة الأصلية.نحصل على نتائج واعدة فيما يتعلق بطلاقة الملخصات والاتساق والأهمية المنتجة.نهجنا سهل التنفيذ للعديد من اللغات لأغراض الإنتاج عن طريق تغيير نموذج الترجمة ببساطة.
We present work on summarising deliberative processes for non-English languages. Unlike commonly studied datasets, such as news articles, this deliberation dataset reflects difficulties of combining multiple narratives, mostly of poor grammatical quality, in a single text. We report an extensive evaluation of a wide range of abstractive summarisation models in combination with an off-the-shelf machine translation model. Texts are translated into English, summarised, and translated back to the original language. We obtain promising results regarding the fluency, consistency and relevance of the summaries produced. Our approach is easy to implement for many languages for production purposes by simply changing the translation model.
References used
https://aclanthology.org/
Neural machine translation (NMT) models are typically trained using a softmax cross-entropy loss where the softmax distribution is compared against the gold labels. In low-resource scenarios and NMT models tend to perform poorly because the model tra
The paper presents experiments in neural machine translation with lexical constraints into a morphologically rich language. In particular and we introduce a method and based on constrained decoding and which handles the inflected forms of lexical ent
Current research on quality estimation of machine translation focuses on the sentence-level quality of the translations. By using explainability methods, we can use these quality estimations for word-level error identification. In this work, we compa
Machine translation usually relies on parallel corpora to provide parallel signals for training. The advent of unsupervised machine translation has brought machine translation away from this reliance, though performance still lags behind traditional
This work introduces a simple regressive ensemble for evaluating machine translation quality based on a set of novel and established metrics. We evaluate the ensemble using a correlation to expert-based MQM scores of the WMT 2021 Metrics workshop. In