من بين القيود الأكثر أهمية في نماذج NLP التعليمية العميقة هي عدم قابلية الترجمة الشفوية، واعتمادها على الارتباطات الزائفة.اقترح العمل السابق مناهج مختلفة لتفسير نماذج الصندوق الأسود للكشف عن الارتباطات الزائفة، ولكن تم استخدام البحث في المقام الأول في سيناريوهات تفاعل الكمبيوتر البشري.لا يزال لا يزال غير متوقع سواء أم لا يمكن استخدام تفسيرات النمطية أو كيفية استخدامها تلقائيا "ميزات مربكة".في هذا العمل، نقترح التأثير على الضبط --- الإجراء الذي يرفع تفسيرات نموذجية لتحديث معلمات النموذج نحو تفسير معقول (بدلا من التفسير الذي يعتمد على الأنماط الزائفة في البيانات) بالإضافة إلى تعلم التنبؤ بالملصقات المهمة.نظرا لأنه في برنامج إعداد خاضع للرقابة، يمكن أن يساعد التأثير على الضبط في إزالة النموذج من الأنماط الزائفة في البيانات، مما يتفوق بشكل كبير على أساليب خط الأساس التي تستخدم التدريب الخصم.
Among the most critical limitations of deep learning NLP models are their lack of interpretability, and their reliance on spurious correlations. Prior work proposed various approaches to interpreting the black-box models to unveil the spurious correlations, but the research was primarily used in human-computer interaction scenarios. It still remains underexplored whether or how such model interpretations can be used to automatically unlearn'' confounding features. In this work, we propose influence tuning---a procedure that leverages model interpretations to update the model parameters towards a plausible interpretation (rather than an interpretation that relies on spurious patterns in the data) in addition to learning to predict the task labels. We show that in a controlled setup, influence tuning can help deconfounding the model from spurious patterns in data, significantly outperforming baseline methods that use adversarial training.
References used
https://aclanthology.org/
Recent work in cross-topic argument mining attempts to learn models that generalise across topics rather than merely relying on within-topic spurious correlations. We examine the effectiveness of this approach by analysing the output of single-task a
Abstract Interpretable rationales for model predictions are crucial in practical applications. We develop neural models that possess an interpretable inference process for dependency parsing. Our models adopt instance-based inference, where dependenc
Existing works on information extraction (IE) have mainly solved the four main tasks separately (entity mention recognition, relation extraction, event trigger detection, and argument extraction), thus failing to benefit from inter-dependencies betwe
Data-to-text (D2T) generation in the biomedical domain is a promising - yet mostly unexplored - field of research. Here, we apply neural models for D2T generation to a real-world dataset consisting of package leaflets of European medicines. We show t
A private learning scheme TextHide was recently proposed to protect the private text data during the training phase via so-called instance encoding. We propose a novel reconstruction attack to break TextHide by recovering the private training data, a