يعمل العمل الحديث في محاولات تعدين الحجة عبر الموضوعات لتعلم النماذج التي تعزز عبر الموضوعات بدلا من الاعتماد فقط على الارتباطات الزائفة داخل الموضوع.نحن ندرس فعالية هذا النهج من خلال تحليل إخراج النماذج ذات المهمة الفردية ومتعدد المهام للتطوير عبر الموضوعات التعدين، من خلال مزيج من تقريبية خطية من حدود قراراتهم، وتجميع الميزات اليدوية، أمثلة التحدي، والاعتبارات عبر المدخلاتكلمات.من المستغرب أن نوضح أن النماذج عبر الموضوعات لا تزال تعتمد في الغالب على ارتباطات زائفة وتعميم فقط داخل مواضيع مرتبطة ارتباطا وثيقا، على سبيل المثال، نموذج مدرب فقط على الكلمات الفئة المغلقة وبعض الكلمات المفتوحة الشائعة تفوقت على حالة منالفن المتبادل نموذج المواضيع المستهدفة البعيدة.
Recent work in cross-topic argument mining attempts to learn models that generalise across topics rather than merely relying on within-topic spurious correlations. We examine the effectiveness of this approach by analysing the output of single-task and multi-task models for cross-topic argument mining, through a combination of linear approximations of their decision boundaries, manual feature grouping, challenge examples, and ablations across the input vocabulary. Surprisingly, we show that cross-topic models still rely mostly on spurious correlations and only generalise within closely related topics, e.g., a model trained only on closed-class words and a few common open-class words outperforms a state-of-the-art cross-topic model on distant target topics.
References used
https://aclanthology.org/
Among the most critical limitations of deep learning NLP models are their lack of interpretability, and their reliance on spurious correlations. Prior work proposed various approaches to interpreting the black-box models to unveil the spurious correl
Following the increasing performance of neural machine translation systems, the paradigm of using automatically translated data for cross-lingual adaptation is now studied in several applicative domains. The capacity to accurately project annotations
Rapidly changing social media content calls for robust and generalisable abuse detection models. However, the state-of-the-art supervised models display degraded performance when they are evaluated on abusive comments that differ from the training co
High-quality arguments are an essential part of decision-making. Automatically predicting the quality of an argument is a complex task that recently got much attention in argument mining. However, the annotation effort for this task is exceptionally
Cross-document event coreference resolution (CDCR) is the task of identifying which event mentions refer to the same events throughout a collection of documents. Annotating CDCR data is an arduous and expensive process, explaining why existing corpor