Do you want to publish a course? Click here

Does Vision-and-Language Pretraining Improve Lexical Grounding?

هل تتم محاكاة الرؤية واللغة تحسين التأريض المعجمي؟

242   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Linguistic representations derived from text alone have been criticized for their lack of grounding, i.e., connecting words to their meanings in the physical world. Vision-and- Language (VL) models, trained jointly on text and image or video data, have been offered as a response to such criticisms. However, while VL pretraining has shown success on multimodal tasks such as visual question answering, it is not yet known how the internal linguistic representations themselves compare to their text-only counterparts. This paper compares the semantic representations learned via VL vs. text-only pretraining for two recent VL models using a suite of analyses (clustering, probing, and performance on a commonsense question answering task) in a language-only setting. We find that the multimodal models fail to significantly outperform the text-only variants, suggesting that future work is required if multimodal pretraining is to be pursued as a means of improving NLP in general.

References used
https://aclanthology.org/
rate research

Read More

Phrase grounding aims to map textual phrases to their associated image regions, which can be a prerequisite for multimodal reasoning and can benefit tasks requiring identifying objects based on language. With pre-trained vision-and-language models ac hieving impressive performance across tasks, it remains unclear if we can directly utilize their learned embeddings for phrase grounding without fine-tuning. To this end, we propose a method to extract matched phrase-region pairs from pre-trained vision-and-language embeddings and propose four fine-tuning objectives to improve the model phrase grounding ability using image-caption data without any supervised grounding signals. Experiments on two representative datasets demonstrate the effectiveness of our objectives, outperforming baseline models in both weakly-supervised and supervised phrase grounding settings. In addition, we evaluate the aligned embeddings on several other downstream tasks and show that we can achieve better phrase grounding without sacrificing representation generality.
The limits of applicability of vision-and language models are defined by the coverage of their training data. Tasks like vision question answering (VQA) often require commonsense and factual information beyond what can be learned from task-specific d atasets. This paper investigates the injection of knowledge from general-purpose knowledge bases (KBs) into vision-and-language transformers. We use an auxiliary training objective that encourages the learned representations to align with graph embeddings of matching entities in a KB. We empirically study the relevance of various KBs to multiple tasks and benchmarks. The technique brings clear benefits to knowledge-demanding question answering tasks (OK-VQA, FVQA) by capturing semantic and relational knowledge absent from existing models. More surprisingly, the technique also benefits visual reasoning tasks (NLVR2, SNLI-VE). We perform probing experiments and show that the injection of additional knowledge regularizes the space of embeddings, which improves the representation of lexical and semantic similarities. The technique is model-agnostic and can expand the applicability of any vision-and-language transformer with minimal computational overhead.
We propose the task of automatically generating commentaries for races in a motor racing game, from vision, structured numerical, and textual data. Commentaries provide information to support spectators in understanding events in races. Commentary ge neration models need to interpret the race situation and generate the correct content at the right moment. We divide the task into two subtasks: utterance timing identification and utterance generation. Because existing datasets do not have such alignments of data in multiple modalities, this setting has not been explored in depth. In this study, we introduce a new large-scale dataset that contains aligned video data, structured numerical data, and transcribed commentaries that consist of 129,226 utterances in 1,389 races in a game. Our analysis reveals that the characteristics of commentaries change over time or from viewpoints. Our experiments on the subtasks show that it is still challenging for a state-of-the-art vision encoder to capture useful information from videos to generate accurate commentaries. We make the dataset and baseline implementation publicly available for further research.
Recent impressive improvements in NLP, largely based on the success of contextual neural language models, have been mostly demonstrated on at most a couple dozen high- resource languages. Building language mod- els and, more generally, NLP systems fo r non- standardized and low-resource languages remains a challenging task. In this work, we fo- cus on North-African colloquial dialectal Arabic written using an extension of the Latin script, called NArabizi, found mostly on social media and messaging communication. In this low-resource scenario with data display- ing a high level of variability, we compare the downstream performance of a character-based language model on part-of-speech tagging and dependency parsing to that of monolingual and multilingual models. We show that a character-based model trained on only 99k sentences of NArabizi and fined-tuned on a small treebank of this language leads to performance close to those obtained with the same architecture pre- trained on large multilingual and monolingual models. Confirming these results a on much larger data set of noisy French user-generated content, we argue that such character-based language models can be an asset for NLP in low-resource and high language variability set- tings.
Multilingual Neural Machine Translation has achieved remarkable performance by training a single translation model for multiple languages. This paper describes our submission (Team ID: CFILT-IITB) for the MultiIndicMT: An Indic Language Multilingual Task at WAT 2021. We train multilingual NMT systems by sharing encoder and decoder parameters with language embedding associated with each token in both encoder and decoder. Furthermore, we demonstrate the use of transliteration (script conversion) for Indic languages in reducing the lexical gap for training a multilingual NMT system. Further, we show improvement in performance by training a multilingual NMT system using languages of the same family, i.e., related languages.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا