Do you want to publish a course? Click here

Can Character-based Language Models Improve Downstream Task Performances In Low-Resource And Noisy Language Scenarios?

هل يمكن طرازات اللغة القائمة على الأحرف تحسين أداء المهام المصب في سيناريوهات اللغة المنخفضة واللغة الصاخبة؟

131   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Recent impressive improvements in NLP, largely based on the success of contextual neural language models, have been mostly demonstrated on at most a couple dozen high- resource languages. Building language mod- els and, more generally, NLP systems for non- standardized and low-resource languages remains a challenging task. In this work, we fo- cus on North-African colloquial dialectal Arabic written using an extension of the Latin script, called NArabizi, found mostly on social media and messaging communication. In this low-resource scenario with data display- ing a high level of variability, we compare the downstream performance of a character-based language model on part-of-speech tagging and dependency parsing to that of monolingual and multilingual models. We show that a character-based model trained on only 99k sentences of NArabizi and fined-tuned on a small treebank of this language leads to performance close to those obtained with the same architecture pre- trained on large multilingual and monolingual models. Confirming these results a on much larger data set of noisy French user-generated content, we argue that such character-based language models can be an asset for NLP in low-resource and high language variability set- tings.

References used
https://aclanthology.org/
rate research

Read More

Deep neural networks and huge language models are becoming omnipresent in natural language applications. As they are known for requiring large amounts of training data, there is a growing body of work to improve the performance in low-resource settin gs. Motivated by the recent fundamental changes towards neural models and the popular pre-train and fine-tune paradigm, we survey promising approaches for low-resource natural language processing. After a discussion about the different dimensions of data availability, we give a structured overview of methods that enable learning when training data is sparse. This includes mechanisms to create additional labeled data like data augmentation and distant supervision as well as transfer learning settings that reduce the need for target supervision. A goal of our survey is to explain how these methods differ in their requirements as understanding them is essential for choosing a technique suited for a specific low-resource setting. Further key aspects of this work are to highlight open issues and to outline promising directions for future research.
Multilingual Neural Machine Translation has achieved remarkable performance by training a single translation model for multiple languages. This paper describes our submission (Team ID: CFILT-IITB) for the MultiIndicMT: An Indic Language Multilingual Task at WAT 2021. We train multilingual NMT systems by sharing encoder and decoder parameters with language embedding associated with each token in both encoder and decoder. Furthermore, we demonstrate the use of transliteration (script conversion) for Indic languages in reducing the lexical gap for training a multilingual NMT system. Further, we show improvement in performance by training a multilingual NMT system using languages of the same family, i.e., related languages.
Linguistic representations derived from text alone have been criticized for their lack of grounding, i.e., connecting words to their meanings in the physical world. Vision-and- Language (VL) models, trained jointly on text and image or video data, ha ve been offered as a response to such criticisms. However, while VL pretraining has shown success on multimodal tasks such as visual question answering, it is not yet known how the internal linguistic representations themselves compare to their text-only counterparts. This paper compares the semantic representations learned via VL vs. text-only pretraining for two recent VL models using a suite of analyses (clustering, probing, and performance on a commonsense question answering task) in a language-only setting. We find that the multimodal models fail to significantly outperform the text-only variants, suggesting that future work is required if multimodal pretraining is to be pursued as a means of improving NLP in general.
Taxonomies are symbolic representations of hierarchical relationships between terms or entities. While taxonomies are useful in broad applications, manually updating or maintaining them is labor-intensive and difficult to scale in practice. Conventio nal supervised methods for this enrichment task fail to find optimal parents of new terms in low-resource settings where only small taxonomies are available because of overfitting to hierarchical relationships in the taxonomies. To tackle the problem of low-resource taxonomy enrichment, we propose Musubu, an efficient framework for taxonomy enrichment in low-resource settings with pretrained language models (LMs) as knowledge bases to compensate for the shortage of information. Musubu leverages an LM-based classifier to determine whether or not inputted term pairs have hierarchical relationships. Musubu also utilizes Hearst patterns to generate queries to leverage implicit knowledge from the LM efficiently for more accurate prediction. We empirically demonstrate the effectiveness of our method in extensive experiments on taxonomies from both a SemEval task and real-world retailer datasets.
Transformer-based language models (LMs) pretrained on large text collections are proven to store a wealth of semantic knowledge. However, 1) they are not effective as sentence encoders when used off-the-shelf, and 2) thus typically lag behind convers ationally pretrained (e.g., via response selection) encoders on conversational tasks such as intent detection (ID). In this work, we propose ConvFiT, a simple and efficient two-stage procedure which turns any pretrained LM into a universal conversational encoder (after Stage 1 ConvFiT-ing) and task-specialised sentence encoder (after Stage 2). We demonstrate that 1) full-blown conversational pretraining is not required, and that LMs can be quickly transformed into effective conversational encoders with much smaller amounts of unannotated data; 2) pretrained LMs can be fine-tuned into task-specialised sentence encoders, optimised for the fine-grained semantics of a particular task. Consequently, such specialised sentence encoders allow for treating ID as a simple semantic similarity task based on interpretable nearest neighbours retrieval. We validate the robustness and versatility of the ConvFiT framework with such similarity-based inference on the standard ID evaluation sets: ConvFiT-ed LMs achieve state-of-the-art ID performance across the board, with particular gains in the most challenging, few-shot setups.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا