Do you want to publish a course? Click here

Naturalness Evaluation of Natural Language Generation in Task-oriented Dialogues Using BERT

تقييم طبيعي لتوليد اللغة الطبيعية في الحوارات الموجهة نحو المهام باستخدام بيرت

252   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper presents an automatic method to evaluate the naturalness of natural language generation in dialogue systems. While this task was previously rendered through expensive and time-consuming human labor, we present this novel task of automatic naturalness evaluation of generated language. By fine-tuning the BERT model, our proposed naturalness evaluation method shows robust results and outperforms the baselines: support vector machines, bi-directional LSTMs, and BLEURT. In addition, the training speed and evaluation performance of naturalness model are improved by transfer learning from quality and informativeness linguistic knowledge.



References used
https://aclanthology.org/
rate research

Read More

Natural Language Generation (NLG) for task-oriented dialogue systems focuses on communicating specific content accurately, fluently, and coherently. While these attributes are crucial for a successful dialogue, it is also desirable to simultaneously accomplish specific stylistic goals, such as response length, point-of-view, descriptiveness, sentiment, formality, and empathy. In this work, we focus on stylistic control and evaluation for schema-guided NLG, with joint goals of achieving both semantic and stylistic control. We experiment in detail with various controlled generation methods for large pretrained language models: specifically, conditional training, guided fine-tuning, and guided decoding. We discuss their advantages and limitations, and evaluate them with a broad range of automatic and human evaluation metrics. Our results show that while high style accuracy and semantic correctness are easier to achieve for more lexically-defined styles with conditional training, stylistic control is also achievable for more semantically complex styles using discriminator-based guided decoding methods. The results also suggest that methods that are more scalable (with less hyper-parameters tuning) and that disentangle context generation and stylistic variations are more effective at achieving semantic correctness and style accuracy.
In recent years, crowdsourcing has gained much attention from researchers to generate data for the Natural Language Generation (NLG) tools or to evaluate them. However, the quality of crowdsourced data has been questioned repeatedly because of the co mplexity of NLG tasks and crowd workers' unknown skills. Moreover, crowdsourcing can also be costly and often not feasible for large-scale data generation or evaluation. To overcome these challenges and leverage the complementary strengths of humans and machine tools, we propose a hybrid human-machine workflow designed explicitly for NLG tasks with real-time quality control mechanisms under budget constraints. This hybrid methodology is a powerful tool for achieving high-quality data while preserving efficiency. By combining human and machine intelligence, the proposed workflow decides dynamically on the next step based on the data from previous steps and given constraints. Our goal is to provide not only the theoretical foundations of the hybrid workflow but also to provide its implementation as open-source in future work.
A reliable clustering algorithm for task-oriented dialogues can help developer analysis and define dialogue tasks efficiently. It is challenging to directly apply prior normal text clustering algorithms for task-oriented dialogues, due to the inheren t differences between them, such as coreference, omission and diversity expression. In this paper, we propose a Dialogue Task Clustering Network model for task-oriented clustering. The proposed model combines context-aware utterance representations and cross-dialogue utterance cluster representations for task-oriented dialogues clustering. An iterative end-to-end training strategy is utilized for dialogue clustering and representation learning jointly. Experiments on three public datasets show that our model significantly outperform strong baselines in all metrics.
Spoken language understanding, usually including intent detection and slot filling, is a core component to build a spoken dialog system. Recent research shows promising results by jointly learning of those two tasks based on the fact that slot fillin g and intent detection are sharing semantic knowledge. Furthermore, attention mechanism boosts joint learning to achieve state-of-the-art results. However, current joint learning models ignore the following important facts: 1. Long-term slot context is not traced effectively, which is crucial for future slot filling. 2. Slot tagging and intent detection could be mutually rewarding, but bi-directional interaction between slot filling and intent detection remains seldom explored. In this paper, we propose a novel approach to model long-term slot context and to fully utilize the semantic correlation between slots and intents. We adopt a key-value memory network to model slot context dynamically and to track more important slot tags decoded before, which are then fed into our decoder for slot tagging. Furthermore, gated memory information is utilized to perform intent detection, mutually improving both tasks through global optimization. Experiments on benchmark ATIS and Snips datasets show that our model achieves state-of-the-art performance and outperforms other methods, especially for the slot filling task.
Continual learning in task-oriented dialogue systems allows the system to add new domains and functionalities overtime after deployment, without incurring the high cost of retraining the whole system each time. In this paper, we propose a first-ever continual learning benchmark for task-oriented dialogue systems with 37 domains to be learned continuously in both modularized and end-to-end learning settings. In addition, we implement and compare multiple existing continual learning baselines, and we propose a simple yet effective architectural method based on residual adapters. We also suggest that the upper bound performance of continual learning should be equivalent to multitask learning when data from all domain is available at once. Our experiments demonstrate that the proposed architectural method and a simple replay-based strategy perform better, by a large margin, compared to other continuous learning techniques, and only slightly worse than the multitask learning upper bound while being 20X faster in learning new domains. We also report several trade-offs in terms of parameter usage, memory size and training time, which are important in the design of a task-oriented dialogue system. The proposed benchmark is released to promote more research in this direction.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا