في الآونة الأخيرة، أظهرت KNN-MT (Khandelwal et al.، 2020) القدرة الواعدة لإدماجها مباشرة نموذج الترجمة الآلية العصبية المدربة مسبقا (NMT) مع استرجاع المجلة K-Levely-Levely-Level (KNN) ذات المستوى الأعلى للمجال تكيف المجال دون إعادة التدريب. على الرغم من كونها جذابة من الناحية النظرية، فإنه يعتمد بشدة على كورسا موازية عالية الجودة داخل المجال، مما يحد من قدرته على التكيف عن المجال غير المزعوم، حيث توجد شركة موازية داخل المجال نادرة أو غير موجودة. في هذه الورقة، نقترح إطارا جديدا يستخدم بشكل مباشر جمل أحادية المجال في اللغة المستهدفة لبناء اسم بيانات فعالة لاسترجاع جار ك. تحقيقا لهذه الغاية، نقدم أولا مهمة AutoNCoder بناء على اللغة المستهدفة، ثم قم بإدراج محولات خفيفة الوزن في نموذج NMT الأصلي لتعيين تمثيل مستوى الرمز المميز لهذه المهمة إلى التمثيل المثالي لمهمة الترجمة المثالية. توضح التجارب في مجموعات البيانات متعددة المجالات أن نهجنا المقترح يحسن بشكل كبير من دقة الترجمة مع بيانات أحادية الجانب المستهدف، مع تحقيق أداء مماثل مع الترجمة الخلفي. تنفيذنا مفتوح مصادر في HTTPS: // github. com / zhengxxn / uda-knn.
Recently, kNN-MT (Khandelwal et al., 2020) has shown the promising capability of directly incorporating the pre-trained neural machine translation (NMT) model with domain-specific token-level k-nearest-neighbor (kNN) retrieval to achieve domain adaptation without retraining. Despite being conceptually attractive, it heavily relies on high-quality in-domain parallel corpora, limiting its capability on unsupervised domain adaptation, where in-domain parallel corpora are scarce or nonexistent. In this paper, we propose a novel framework that directly uses in-domain monolingual sentences in the target language to construct an effective datastore for k-nearest-neighbor retrieval. To this end, we first introduce an autoencoder task based on the target language, and then insert lightweight adapters into the original NMT model to map the token-level representation of this task to the ideal representation of the translation task. Experiments on multi-domain datasets demonstrate that our proposed approach significantly improves the translation accuracy with target-side monolingual data, while achieving comparable performance with back-translation. Our implementation is open-sourced at https://github. com/zhengxxn/UDA-KNN.
References used
https://aclanthology.org/
This paper considers the unsupervised domain adaptation problem for neural machine translation (NMT), where we assume the access to only monolingual text in either the source or target language in the new domain. We propose a cross-lingual data selec
Production NMT systems typically need to serve niche domains that are not covered by adequately large and readily available parallel corpora. As a result, practitioners often fine-tune general purpose models to each of the domains their organisation
Non-autoregressive neural machine translation, which decomposes the dependence on previous target tokens from the inputs of the decoder, has achieved impressive inference speedup but at the cost of inferior accuracy. Previous works employ iterative d
Machine translation systems are vulnerable to domain mismatch, especially in a low-resource scenario. Out-of-domain translations are often of poor quality and prone to hallucinations, due to exposure bias and the decoder acting as a language model. W
Unsupervised neural machine translation (UNMT) that relies solely on massive monolingual corpora has achieved remarkable results in several translation tasks. However, in real-world scenarios, massive monolingual corpora do not exist for some extreme