Do you want to publish a course? Click here

The Highs and Lows of Simple Lexical Domain Adaptation Approaches for Neural Machine Translation

أعلى مستوياتها وخاناتها من أساليب التكيف المجال المعجمية البسيطة للترجمة الآلية العصبية

317   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Machine translation systems are vulnerable to domain mismatch, especially in a low-resource scenario. Out-of-domain translations are often of poor quality and prone to hallucinations, due to exposure bias and the decoder acting as a language model. We adopt two approaches to alleviate this problem: lexical shortlisting restricted by IBM statistical alignments, and hypothesis reranking based on similarity. The methods are computationally cheap and show success on low-resource out-of-domain test sets. However, the methods lose advantage when there is sufficient data or too great domain mismatch. This is due to both the IBM model losing its advantage over the implicitly learned neural alignment, and issues with subword segmentation of unseen words.



References used
https://aclanthology.org/
rate research

Read More

We study the problem of domain adaptation in Neural Machine Translation (NMT) when domain-specific data cannot be shared due to confidentiality or copyright issues. As a first step, we propose to fragment data into phrase pairs and use a random sampl e to fine-tune a generic NMT model instead of the full sentences. Despite the loss of long segments for the sake of confidentiality protection, we find that NMT quality can considerably benefit from this adaptation, and that further gains can be obtained with a simple tagging technique.
Domain Adaptation is widely used in practical applications of neural machine translation, which aims to achieve good performance on both general domain and in-domain data. However, the existing methods for domain adaptation usually suffer from catast rophic forgetting, large domain divergence, and model explosion. To address these three problems, we propose a method of divide and conquer'' which is based on the importance of neurons or parameters for the translation model. In this method, we first prune the model and only keep the important neurons or parameters, making them responsible for both general-domain and in-domain translation. Then we further train the pruned model supervised by the original whole model with knowledge distillation. Last we expand the model to the original size and fine-tune the added parameters for the in-domain translation. We conducted experiments on different language pairs and domains and the results show that our method can achieve significant improvements compared with several strong baselines.
Successful methods for unsupervised neural machine translation (UNMT) employ cross-lingual pretraining via self-supervision, often in the form of a masked language modeling or a sequence generation task, which requires the model to align the lexical- and high-level representations of the two languages. While cross-lingual pretraining works for similar languages with abundant corpora, it performs poorly in low-resource and distant languages. Previous research has shown that this is because the representations are not sufficiently aligned. In this paper, we enhance the bilingual masked language model pretraining with lexical-level information by using type-level cross-lingual subword embeddings. Empirical results demonstrate improved performance both on UNMT (up to 4.5 BLEU) and bilingual lexicon induction using our method compared to a UNMT baseline.
Production NMT systems typically need to serve niche domains that are not covered by adequately large and readily available parallel corpora. As a result, practitioners often fine-tune general purpose models to each of the domains their organisation caters to. The number of domains however can often become large, which in combination with the number of languages that need serving can lead to an unscalable fleet of models to be developed and maintained. We propose Multi Dimensional Tagging, a method for fine-tuning a single NMT model on several domains simultaneously, thus drastically reducing development and maintenance costs. We run experiments where a single MDT model compares favourably to a set of SOTA specialist models, even when evaluated on the domain those baselines have been fine-tuned on. Besides BLEU, we report human evaluation results. MDT models are now live at Booking.com, powering an MT engine that serves millions of translations a day in over 40 different languages.
Recently a number of approaches have been proposed to improve translation performance for document-level neural machine translation (NMT). However, few are focusing on the subject of lexical translation consistency. In this paper we apply one transla tion per discourse'' in NMT, and aim to encourage lexical translation consistency for document-level NMT. This is done by first obtaining a word link for each source word in a document, which tells the positions where the source word appears. Then we encourage the translation of those words within a link to be consistent in two ways. On the one hand, when encoding sentences within a document we properly share context information of those words. On the other hand, we propose an auxiliary loss function to better constrain that their translation should be consistent. Experimental results on Chinese↔English and English→French translation tasks show that our approach not only achieves state-of-the-art performance in BLEU scores, but also greatly improves lexical consistency in translation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا