تحتاج أنظمة الإنتاج NMT عادة إلى خدمة مجالات المتخصصة التي لا تغطيها كوربيا كبيرة ومتاحة بسهولة بشكل مناسب.ونتيجة لذلك، غالبا ما يكون الممارسون نماذج غرضا عاما نماذج عامة على كل من المجالات التي يلبيها منظمةها.ومع ذلك، يمكن أن يصبح عدد المجالات كبيرا، مما يتجمع مع عدد اللغات التي تحتاج إلى خدمة يمكن أن تؤدي إلى وضع أسطول غير قابل للحل من النماذج والمحافظة عليها.نقترح علامات متعددة الأبعاد، وهي طريقة لضبط نموذج NMT واحد على عدة مجالات في وقت واحد، وبالتالي تقليل تكاليف التطوير والصيانة بشكل كبير.نحن ندير تجارب حيث يقارن نموذج واحد MDT بشكل إيجابي لمجموعة من نماذج SOTA متخصصة، حتى عند تقييمها على المجال كانت تلك الأساس التي تم ضبطها بشكل جيد.إلى جانب بلو، نبلغ عن نتائج التقييم البشري.تعيش نماذج MDT الآن في Booking.com، مما يؤدي إلى تشغيل محرك MT الذي يخدم ملايين الترجمات يوميا في أكثر من 40 لغة مختلفة.
Production NMT systems typically need to serve niche domains that are not covered by adequately large and readily available parallel corpora. As a result, practitioners often fine-tune general purpose models to each of the domains their organisation caters to. The number of domains however can often become large, which in combination with the number of languages that need serving can lead to an unscalable fleet of models to be developed and maintained. We propose Multi Dimensional Tagging, a method for fine-tuning a single NMT model on several domains simultaneously, thus drastically reducing development and maintenance costs. We run experiments where a single MDT model compares favourably to a set of SOTA specialist models, even when evaluated on the domain those baselines have been fine-tuned on. Besides BLEU, we report human evaluation results. MDT models are now live at Booking.com, powering an MT engine that serves millions of translations a day in over 40 different languages.
References used
https://aclanthology.org/
We study the problem of domain adaptation in Neural Machine Translation (NMT) when domain-specific data cannot be shared due to confidentiality or copyright issues. As a first step, we propose to fragment data into phrase pairs and use a random sampl
Domain Adaptation is widely used in practical applications of neural machine translation, which aims to achieve good performance on both general domain and in-domain data. However, the existing methods for domain adaptation usually suffer from catast
Neural machine translation based on bilingual text with limited training data suffers from lexical diversity, which lowers the rare word translation accuracy and reduces the generalizability of the translation system. In this work, we utilise the mul
Machine translation systems are vulnerable to domain mismatch, especially in a low-resource scenario. Out-of-domain translations are often of poor quality and prone to hallucinations, due to exposure bias and the decoder acting as a language model. W
In this paper, we describe our MiSS system that participated in the WMT21 news translation task. We mainly participated in the evaluation of the three translation directions of English-Chinese and Japanese-English translation tasks. In the systems su