Do you want to publish a course? Click here

Learning to Rewrite for Non-Autoregressive Neural Machine Translation

تعلم إعادة كتابة الترجمة الآلية العصبية غير التلقائي

295   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Non-autoregressive neural machine translation, which decomposes the dependence on previous target tokens from the inputs of the decoder, has achieved impressive inference speedup but at the cost of inferior accuracy. Previous works employ iterative decoding to improve the translation by applying multiple refinement iterations. However, a serious drawback is that these approaches expose the serious weakness in recognizing the erroneous translation pieces. In this paper, we propose an architecture named RewriteNAT to explicitly learn to rewrite the erroneous translation pieces. Specifically, RewriteNAT utilizes a locator module to locate the erroneous ones, which are then revised into the correct ones by a revisor module. Towards keeping the consistency of data distribution with iterative decoding, an iterative training strategy is employed to further improve the capacity of rewriting. Extensive experiments conducted on several widely-used benchmarks show that RewriteNAT can achieve better performance while significantly reducing decoding time, compared with previous iterative decoding strategies. In particular, RewriteNAT can obtain competitive results with autoregressive translation on WMT14 En-De, En-Fr and WMT16 Ro-En translation benchmarks.



References used
https://aclanthology.org/
rate research

Read More

Machine translation usually relies on parallel corpora to provide parallel signals for training. The advent of unsupervised machine translation has brought machine translation away from this reliance, though performance still lags behind traditional supervised machine translation. In unsupervised machine translation, the model seeks symmetric language similarities as a source of weak parallel signal to achieve translation. Chomsky's Universal Grammar theory postulates that grammar is an innate form of knowledge to humans and is governed by universal principles and constraints. Therefore, in this paper, we seek to leverage such shared grammar clues to provide more explicit language parallel signals to enhance the training of unsupervised machine translation models. Through experiments on multiple typical language pairs, we demonstrate the effectiveness of our proposed approaches.
Recently a number of approaches have been proposed to improve translation performance for document-level neural machine translation (NMT). However, few are focusing on the subject of lexical translation consistency. In this paper we apply one transla tion per discourse'' in NMT, and aim to encourage lexical translation consistency for document-level NMT. This is done by first obtaining a word link for each source word in a document, which tells the positions where the source word appears. Then we encourage the translation of those words within a link to be consistent in two ways. On the one hand, when encoding sentences within a document we properly share context information of those words. On the other hand, we propose an auxiliary loss function to better constrain that their translation should be consistent. Experimental results on Chinese↔English and English→French translation tasks show that our approach not only achieves state-of-the-art performance in BLEU scores, but also greatly improves lexical consistency in translation.
Scheduled sampling is widely used to mitigate the exposure bias problem for neural machine translation. Its core motivation is to simulate the inference scene during training by replacing ground-truth tokens with predicted tokens, thus bridging the g ap between training and inference. However, vanilla scheduled sampling is merely based on training steps and equally treats all decoding steps. Namely, it simulates an inference scene with uniform error rates, which disobeys the real inference scene, where larger decoding steps usually have higher error rates due to error accumulations. To alleviate the above discrepancy, we propose scheduled sampling methods based on decoding steps, increasing the selection chance of predicted tokens with the growth of decoding steps. Consequently, we can more realistically simulate the inference scene during training, thus better bridging the gap between training and inference. Moreover, we investigate scheduled sampling based on both training steps and decoding steps for further improvements. Experimentally, our approaches significantly outperform the Transformer baseline and vanilla scheduled sampling on three large-scale WMT tasks. Additionally, our approaches also generalize well to the text summarization task on two popular benchmarks.
Non-Autoregressive machine Translation (NAT) models have demonstrated significant inference speedup but suffer from inferior translation accuracy. The common practice to tackle the problem is transferring the Autoregressive machine Translation (AT) k nowledge to NAT models, e.g., with knowledge distillation. In this work, we hypothesize and empirically verify that AT and NAT encoders capture different linguistic properties of source sentences. Therefore, we propose to adopt multi-task learning to transfer the AT knowledge to NAT models through encoder sharing. Specifically, we take the AT model as an auxiliary task to enhance NAT model performance. Experimental results on WMT14 En-De and WMT16 En-Ro datasets show that the proposed Multi-Task NAT achieves significant improvements over the baseline NAT models. Furthermore, the performance on large-scale WMT19 and WMT20 En-De datasets confirm the consistency of our proposed method. In addition, experimental results demonstrate that our Multi-Task NAT is complementary to knowledge distillation, the standard knowledge transfer method for NAT.
Multi-head self-attention recently attracts enormous interest owing to its specialized functions, significant parallelizable computation, and flexible extensibility. However, very recent empirical studies show that some self-attention heads make litt le contribution and can be pruned as redundant heads. This work takes a novel perspective of identifying and then vitalizing redundant heads. We propose a redundant head enlivening (RHE) method to precisely identify redundant heads, and then vitalize their potential by learning syntactic relations and prior knowledge in the text without sacrificing the roles of important heads. Two novel syntax-enhanced attention (SEA) mechanisms: a dependency mask bias and a relative local-phrasal position bias, are introduced to revise self-attention distributions for syntactic enhancement in machine translation. The importance of individual heads is dynamically evaluated during the redundant heads identification, on which we apply SEA to vitalize redundant heads while maintaining the strength of important heads. Experimental results on widely adopted WMT14 and WMT16 English to German and English to Czech language machine translation validate the RHE effectiveness.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا