يهدف توليد تقرير الأشعة إلى توليد النص الوصفي من صور الأشعة تلقائيا، مما قد يقدم فرصة لتحسين تقارير الأشعة وتفسيره.يتكون الإعداد النموذجي من نماذج ترميز ترميز التشفير التدريب على أزواج تقارير الصور مع فقدان الانتروبيا الصليب، والذي يكافح من أجل توليد جمل إعلامية للتشخيصات السريرية لأن النتائج العادية تهيمن على مجموعات البيانات.لمعالجة هذا التحدي وتشجيع المزيد من مخرجات النص بدقة سريريا، نقترح رواية خسارة مضيعة للإشراف ضعيفا لتوليد التقرير الطبي.تظهر النتائج التجريبية أن أسلوبنا يستفيد من التقارير المستهدفة المتناقضة مع غير صحيحة ولكنها قريبة من القريبة.تتفوق على العمل السابق على كل من صحة سرية ومقاييس جيل النص إلى معايير عامة.
Radiology report generation aims at generating descriptive text from radiology images automatically, which may present an opportunity to improve radiology reporting and interpretation. A typical setting consists of training encoder-decoder models on image-report pairs with a cross entropy loss, which struggles to generate informative sentences for clinical diagnoses since normal findings dominate the datasets. To tackle this challenge and encourage more clinically-accurate text outputs, we propose a novel weakly supervised contrastive loss for medical report generation. Experimental results demonstrate that our method benefits from contrasting target reports with incorrect but semantically-close ones. It outperforms previous work on both clinical correctness and text generation metrics for two public benchmarks.
References used
https://aclanthology.org/
Our paper aims to automate the generation of medical reports from chest X-ray image inputs, a critical yet time-consuming task for radiologists. Existing medical report generation efforts emphasize producing human-readable reports, yet the generated
Strategies for improving the training and prediction quality of weakly supervised machine learning models vary in how much they are tailored to a specific task or integrated with a specific model architecture. In this work, we introduce Knodle, a sof
Detecting out-of-domain (OOD) intents is crucial for the deployed task-oriented dialogue system. Previous unsupervised OOD detection methods only extract discriminative features of different in-domain intents while supervised counterparts can directl
Large-scale auto-regressive models have achieved great success in dialogue response generation, with the help of Transformer layers. However, these models do not learn a representative latent space of the sentence distribution, making it hard to cont
An intelligent dialogue system in a multi-turn setting should not only generate the responses which are of good quality, but it should also generate the responses which can lead to long-term success of the dialogue. Although, the current approaches i