Do you want to publish a course? Click here

WeaSuL: Weakly Supervised Dialogue Policy Learning: Reward Estimation for Multi-turn Dialogue

عازلة: تعلم سياسة الحوار الخاضعة للإشراف ضعيف: تقدير المكافآت للحوار متعدد الدوران

623   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

An intelligent dialogue system in a multi-turn setting should not only generate the responses which are of good quality, but it should also generate the responses which can lead to long-term success of the dialogue. Although, the current approaches improved the response quality, but they over-look the training signals present in the dialogue data. We can leverage these signals to generate the weakly supervised training data for learning dialog policy and reward estimator, and make the policy take actions (generates responses) which can foresee the future direction for a successful (rewarding) conversation. We simulate the dialogue between an agent and a user (modelled similar to an agent with supervised learning objective) to interact with each other. The agent uses dynamic blocking to generate ranked diverse responses and exploration-exploitation to select among the Top-K responses. Each simulated state-action pair is evaluated (works as a weak annotation) with three quality modules: Semantic Relevant, Semantic Coherence and Consistent Flow. Empirical studies with two benchmarks indicate that our model can significantly out-perform the response quality and lead to a successful conversation on both automatic evaluation and human judgment.



References used
https://aclanthology.org/
rate research

Read More

Despite the success of neural dialogue systems in achieving high performance on the leader-board, they cannot meet users' requirements in practice, due to their poor reasoning skills. The underlying reason is that most neural dialogue models only cap ture the syntactic and semantic information, but fail to model the logical consistency between the dialogue history and the generated response. Recently, a new multi-turn dialogue reasoning task has been proposed, to facilitate dialogue reasoning research. However, this task is challenging, because there are only slight differences between the illogical response and the dialogue history. How to effectively solve this challenge is still worth exploring. This paper proposes a Fine-grained Comparison Model (FCM) to tackle this problem. Inspired by human's behavior in reading comprehension, a comparison mechanism is proposed to focus on the fine-grained differences in the representation of each response candidate. Specifically, each candidate representation is compared with the whole history to obtain a history consistency representation. Furthermore, the consistency signals between each candidate and the speaker's own history are considered to drive a model prefer a candidate that is logically consistent with the speaker's history logic. Finally, the above consistency representations are employed to output a ranking list of the candidate responses for multi-turn dialogue reasoning. Experimental results on two public dialogue datasets show that our method obtains higher ranking scores than the baseline models.
Quality estimation (QE) of machine translation (MT) aims to evaluate the quality of machine-translated sentences without references and is important in practical applications of MT. Training QE models require massive parallel data with hand-crafted q uality annotations, which are time-consuming and labor-intensive to obtain. To address the issue of the absence of annotated training data, previous studies attempt to develop unsupervised QE methods. However, very few of them can be applied to both sentence- and word-level QE tasks, and they may suffer from noises in the synthetic data. To reduce the negative impact of noises, we propose a self-supervised method for both sentence- and word-level QE, which performs quality estimation by recovering the masked target words. Experimental results show that our method outperforms previous unsupervised methods on several QE tasks in different language pairs and domains.
Paraphrase generation is a longstanding NLP task that has diverse applications on downstream NLP tasks. However, the effectiveness of existing efforts predominantly relies on large amounts of golden labeled data. Though unsupervised endeavors have be en proposed to alleviate this issue, they may fail to generate meaningful paraphrases due to the lack of supervision signals. In this work, we go beyond the existing paradigms and propose a novel approach to generate high-quality paraphrases with data of weak supervision. Specifically, we tackle the weakly-supervised paraphrase generation problem by: (1) obtaining abundant weakly-labeled parallel sentences via retrieval-based pseudo paraphrase expansion; and (2) developing a meta-learning framework to progressively select valuable samples for fine-tuning a pre-trained language model BART on the sentential paraphrasing task. We demonstrate that our approach achieves significant improvements over existing unsupervised approaches, and is even comparable in performance with supervised state-of-the-arts.
Deep reinforcement learning has shown great potential in training dialogue policies. However, its favorable performance comes at the cost of many rounds of interaction. Most of the existing dialogue policy methods rely on a single learning system, wh ile the human brain has two specialized learning and memory systems, supporting to find good solutions without requiring copious examples. Inspired by the human brain, this paper proposes a novel complementary policy learning (CPL) framework, which exploits the complementary advantages of the episodic memory (EM) policy and the deep Q-network (DQN) policy to achieve fast and effective dialogue policy learning. In order to coordinate between the two policies, we proposed a confidence controller to control the complementary time according to their relative efficacy at different stages. Furthermore, memory connectivity and time pruning are proposed to guarantee the flexible and adaptive generalization of the EM policy in dialog tasks. Experimental results on three dialogue datasets show that our method significantly outperforms existing methods relying on a single learning system.
Multi-party dialogue machine reading comprehension (MRC) brings tremendous challenge since it involves multiple speakers at one dialogue, resulting in intricate speaker information flows and noisy dialogue contexts. To alleviate such difficulties, pr evious models focus on how to incorporate these information using complex graph-based modules and additional manually labeled data, which is usually rare in real scenarios. In this paper, we design two labour-free self- and pseudo-self-supervised prediction tasks on speaker and key-utterance to implicitly model the speaker information flows, and capture salient clues in a long dialogue. Experimental results on two benchmark datasets have justified the effectiveness of our method over competitive baselines and current state-of-the-art models.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا