Do you want to publish a course? Click here

Predicting Discourse Trees from Transformer-based Neural Summarizers

التنبؤ بأشجار الخطاب من الملخصات العصبية القائمة على المحولات

388   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Previous work indicates that discourse information benefits summarization. In this paper, we explore whether this synergy between discourse and summarization is bidirectional, by inferring document-level discourse trees from pre-trained neural summarizers. In particular, we generate unlabeled RST-style discourse trees from the self-attention matrices of the transformer model. Experiments across models and datasets reveal that the summarizer learns both, dependency- and constituency-style discourse information, which is typically encoded in a single head, covering long- and short-distance discourse dependencies. Overall, the experimental results suggest that the learned discourse information is general and transferable inter-domain.



References used
https://aclanthology.org/
rate research

Read More

Sentence splitting involves the segmentation of a sentence into two or more shorter sentences. It is a key component of sentence simplification, has been shown to help human comprehension and is a useful preprocessing step for NLP tasks such as summa risation and relation extraction. While several methods and datasets have been proposed for developing sentence splitting models, little attention has been paid to how sentence splitting interacts with discourse structure. In this work, we focus on cases where the input text contains a discourse connective, which we refer to as discourse-based sentence splitting. We create synthetic and organic datasets for discourse-based splitting and explore different ways of combining these datasets using different model architectures. We show that pipeline models which use discourse structure to mediate sentence splitting outperform end-to-end models in learning the various ways of expressing a discourse relation but generate text that is less grammatical; that large scale synthetic data provides a better basis for learning than smaller scale organic data; and that training on discourse-focused, rather than on general sentence splitting data provides a better basis for discourse splitting.
Most of the existing studies of language use in social media content have focused on the surface-level linguistic features (e.g., function words and punctuation marks) and the semantic level aspects (e.g., the topics, sentiment, and emotions) of the comments. The writer's strategies of constructing and connecting text segments have not been widely explored even though this knowledge is expected to shed light on how people reason in online environments. Contributing to this analysis direction for social media studies, we build an openly accessible neural RST parsing system that analyzes discourse relations in an online comment. Our experiments demonstrate that this system achieves comparable performance among all the neural RST parsing systems. To demonstrate the use of this tool in social media analysis, we apply it to identify the discourse relations in persuasive and non-persuasive comments and examine the relationships among the binary discourse tree depth, discourse relations, and the perceived persuasiveness of online comments. Our work demonstrates the potential of analyzing discourse structures of online comments with our system and the implications of these structures for understanding online communications.
This paper presents a global summarization method for live sport commentaries for which we have a human-written summary available. This method is based on a neural generative summarizer. The amount of data available for training is limited compared t o corpora commonly used by neural summarizers. We propose to help the summarizer to learn from a limited amount of data by limiting the entropy of the input texts. This step is performed by a classification into categories derived by a detailed analysis of the human-written summaries. We show that the filtering helps the summarization system to overcome the lack of resources. However, several improving points have emerged from this preliminary study, that we discuss and plan to implement in future work.
Abstract Interpretable rationales for model predictions are crucial in practical applications. We develop neural models that possess an interpretable inference process for dependency parsing. Our models adopt instance-based inference, where dependenc y edges are extracted and labeled by comparing them to edges in a training set. The training edges are explicitly used for the predictions; thus, it is easy to grasp the contribution of each edge to the predictions. Our experiments show that our instance-based models achieve competitive accuracy with standard neural models and have the reasonable plausibility of instance-based explanations.
Machine reading comprehension (MRC) is one of the most challenging tasks in natural language processing domain. Recent state-of-the-art results for MRC have been achieved with the pre-trained language models, such as BERT and its modifications. Despi te the high performance of these models, they still suffer from the inability to retrieve correct answers from the detailed and lengthy passages. In this work, we introduce a novel scheme for incorporating the discourse structure of the text into a self-attention network, and, thus, enrich the embedding obtained from the standard BERT encoder with the additional linguistic knowledge. We also investigate the influence of different types of linguistic information on the model's ability to answer complex questions that require deep understanding of the whole text. Experiments performed on the SQuAD benchmark and more complex question answering datasets have shown that linguistic enhancing boosts the performance of the standard BERT model significantly.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا