Do you want to publish a course? Click here

Detecting Polarized Topics Using Partisanship-aware Contextualized Topic Embeddings

الكشف عن الموضوعات المستقطبة باستخدام Attisanship-Aware السياق الموضوعات

280   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Growing polarization of the news media has been blamed for fanning disagreement, controversy and even violence. Early identification of polarized topics is thus an urgent matter that can help mitigate conflict. However, accurate measurement of topic-wise polarization is still an open research challenge. To address this gap, we propose Partisanship-aware Contextualized Topic Embeddings (PaCTE), a method to automatically detect polarized topics from partisan news sources. Specifically, utilizing a language model that has been finetuned on recognizing partisanship of the news articles, we represent the ideology of a news corpus on a topic by corpus-contextualized topic embedding and measure the polarization using cosine distance. We apply our method to a dataset of news articles about the COVID-19 pandemic. Extensive experiments on different news sources and topics demonstrate the efficacy of our method to capture topical polarization, as indicated by its effectiveness of retrieving the most polarized topics.



References used
https://aclanthology.org/
rate research

Read More

We present machine learning classifiers to automatically identify COVID-19 misinformation on social media in three languages: English, Bulgarian, and Arabic. We compared 4 multitask learning models for this task and found that a model trained with En glish BERT achieves the best results for English, and multilingual BERT achieves the best results for Bulgarian and Arabic. We experimented with zero shot, few shot, and target-only conditions to evaluate the impact of target-language training data on classifier performance, and to understand the capabilities of different models to generalize across languages in detecting misinformation online. This work was performed as a submission to the shared task, NLP4IF 2021: Fighting the COVID-19 Infodemic. Our best models achieved the second best evaluation test results for Bulgarian and Arabic among all the participating teams and obtained competitive scores for English.
One of the long-standing challenges in lexical semantics consists in learning representations of words which reflect their semantic properties. The remarkable success of word embeddings for this purpose suggests that high-quality representations can be obtained by summarizing the sentence contexts of word mentions. In this paper, we propose a method for learning word representations that follows this basic strategy, but differs from standard word embeddings in two important ways. First, we take advantage of contextualized language models (CLMs) rather than bags of word vectors to encode contexts. Second, rather than learning a word vector directly, we use a topic model to partition the contexts in which words appear, and then learn different topic-specific vectors for each word. Finally, we use a task-specific supervision signal to make a soft selection of the resulting vectors. We show that this simple strategy leads to high-quality word vectors, which are more predictive of semantic properties than word embeddings and existing CLM-based strategies.
With mental health as a problem domain in NLP, the bulk of contemporary literature revolves around building better mental illness prediction models. The research focusing on the identification of discussion clusters in online mental health communitie s has been relatively limited. Moreover, as the underlying methodologies used in these studies mainly conform to the traditional machine learning models and statistical methods, the scope for introducing contextualized word representations for topic and theme extraction from online mental health communities remains open. Thus, in this research, we propose topic-infused deep contextualized representations, a novel data representation technique that uses autoencoders to combine deep contextual embeddings with topical information, generating robust representations for text clustering. Investigating the Reddit discourse on Post-Traumatic Stress Disorder (PTSD) and Complex Post-Traumatic Stress Disorder (C-PTSD), we elicit the thematic clusters representing the latent topics and themes discussed in the r/ptsd and r/CPTSD subreddits. Furthermore, we also present a qualitative analysis and characterization of each cluster, unraveling the prevalent discourse themes.
Slow emerging topic detection is a task between event detection, where we aggregate behaviors of different words on short period of time, and language evolution, where we monitor their long term evolution. In this work, we tackle the problem of early detection of slowly emerging new topics. To this end, we gather evidence of weak signals at the word level. We propose to monitor the behavior of words representation in an embedding space and use one of its geometrical properties to characterize the emergence of topics. As evaluation is typically hard for this kind of task, we present a framework for quantitative evaluation and show positive results that outperform state-of-the-art methods. Our method is evaluated on two public datasets of press and scientific articles.
This paper describes a compact and effective model for low-latency passage retrieval in conversational search based on learned dense representations. Prior to our work, the state-of-the-art approach uses a multi-stage pipeline comprising conversation al query reformulation and information retrieval modules. Despite its effectiveness, such a pipeline often includes multiple neural models that require long inference times. In addition, independently optimizing each module ignores dependencies among them. To address these shortcomings, we propose to integrate conversational query reformulation directly into a dense retrieval model. To aid in this goal, we create a dataset with pseudo-relevance labels for conversational search to overcome the lack of training data and to explore different training strategies. We demonstrate that our model effectively rewrites conversational queries as dense representations in conversational search and open-domain question answering datasets. Finally, after observing that our model learns to adjust the L2 norm of query token embeddings, we leverage this property for hybrid retrieval and to support error analysis.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا