نقدم مصنفات التعلم الآلية لتحديد المعلومات الخاطئة COVID-19 تلقائيا على وسائل التواصل الاجتماعي بثلاث لغات: الإنجليزية، البلغارية، والعربية.قمنا بمقارنة 4 نماذج تعليمية متعددة الأيتاكف لهذه المهمة ووجدت أن نموذج مدرب مع بيرت الإنجليزية يحقق أفضل النتائج للغة الإنجليزية، وتحقق بيرت متعددة اللغات أفضل النتائج عن البلغارية والعربية.لقد جربنا لقطة صفرية، وقلة طرية، والظروف المستهدفة فقط لتقييم تأثير بيانات التدريب على اللغة المستهدفة حول أداء المصنف، وفهم قدرات نماذج مختلفة للتعميم عبر اللغات في الكشف عن المعلومات الخاطئة عبر الإنترنت.تم إجراء هذا العمل كإرسال إلى المهمة المشتركة، NLP4IF 2021: مكافحة المعكرات المعاكسة 19.حققت أفضل طرازاتنا ثاني أفضل نتائج اختبار التقييم في البلغارية والعربية بين جميع الفرق المشاركة وحصلت على درجات تنافسية للغة الإنجليزية.
We present machine learning classifiers to automatically identify COVID-19 misinformation on social media in three languages: English, Bulgarian, and Arabic. We compared 4 multitask learning models for this task and found that a model trained with English BERT achieves the best results for English, and multilingual BERT achieves the best results for Bulgarian and Arabic. We experimented with zero shot, few shot, and target-only conditions to evaluate the impact of target-language training data on classifier performance, and to understand the capabilities of different models to generalize across languages in detecting misinformation online. This work was performed as a submission to the shared task, NLP4IF 2021: Fighting the COVID-19 Infodemic. Our best models achieved the second best evaluation test results for Bulgarian and Arabic among all the participating teams and obtained competitive scores for English.
References used
https://aclanthology.org/
Irrespective of the success of the deep learning-based mixed-domain transfer learning approach for solving various Natural Language Processing tasks, it does not lend a generalizable solution for detecting misinformation from COVID-19 social media da
Online social media platforms increasingly rely on Natural Language Processing (NLP) techniques to detect abusive content at scale in order to mitigate the harms it causes to their users. However, these techniques suffer from various sampling and ass
In the midst of a global pandemic, understanding the public's opinion of their government's policy-level, non-pharmaceutical interventions (NPIs) is a crucial component of the health-policy-making process. Prior work on CoViD-19 NPI sentiment analysi
In this paper we introduce ArCOV19-Rumors, an Arabic COVID-19 Twitter dataset for misinformation detection composed of tweets containing claims from 27th January till the end of April 2020. We collected 138 verified claims, mostly from popular fact-c
The spread of COVID-19 has been accompanied with widespread misinformation on social media. In particular, Twitterverse has seen a huge increase in dissemination of distorted facts and figures. The present work aims at identifying tweets regarding CO