Do you want to publish a course? Click here

Detecting Multilingual COVID-19 Misinformation on Social Media via Contextualized Embeddings

الكشف عن المعلومات الخاطئة متعددة اللغات Covid-19 بشأن وسائل التواصل الاجتماعي عبر المدينات السياقية

325   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We present machine learning classifiers to automatically identify COVID-19 misinformation on social media in three languages: English, Bulgarian, and Arabic. We compared 4 multitask learning models for this task and found that a model trained with English BERT achieves the best results for English, and multilingual BERT achieves the best results for Bulgarian and Arabic. We experimented with zero shot, few shot, and target-only conditions to evaluate the impact of target-language training data on classifier performance, and to understand the capabilities of different models to generalize across languages in detecting misinformation online. This work was performed as a submission to the shared task, NLP4IF 2021: Fighting the COVID-19 Infodemic. Our best models achieved the second best evaluation test results for Bulgarian and Arabic among all the participating teams and obtained competitive scores for English.

References used
https://aclanthology.org/

rate research

Read More

Irrespective of the success of the deep learning-based mixed-domain transfer learning approach for solving various Natural Language Processing tasks, it does not lend a generalizable solution for detecting misinformation from COVID-19 social media da ta. Due to the inherent complexity of this type of data, caused by its dynamic (context evolves rapidly), nuanced (misinformation types are often ambiguous), and diverse (skewed, fine-grained, and overlapping categories) nature, it is imperative for an effective model to capture both the local and global context of the target domain. By conducting a systematic investigation, we show that: (i) the deep Transformer-based pre-trained models, utilized via the mixed-domain transfer learning, are only good at capturing the local context, thus exhibits poor generalization, and (ii) a combination of shallow network-based domain-specific models and convolutional neural networks can efficiently extract local as well as global context directly from the target data in a hierarchical fashion, enabling it to offer a more generalizable solution.
Online social media platforms increasingly rely on Natural Language Processing (NLP) techniques to detect abusive content at scale in order to mitigate the harms it causes to their users. However, these techniques suffer from various sampling and ass ociation biases present in training data, often resulting in sub-par performance on content relevant to marginalized groups, potentially furthering disproportionate harms towards them. Studies on such biases so far have focused on only a handful of axes of disparities and subgroups that have annotations/lexicons available. Consequently, biases concerning non-Western contexts are largely ignored in the literature. In this paper, we introduce a weakly supervised method to robustly detect lexical biases in broader geo-cultural contexts. Through a case study on a publicly available toxicity detection model, we demonstrate that our method identifies salient groups of cross-geographic errors, and, in a follow up, demonstrate that these groupings reflect human judgments of offensive and inoffensive language in those geographic contexts. We also conduct analysis of a model trained on a dataset with ground truth labels to better understand these biases, and present preliminary mitigation experiments.
In the midst of a global pandemic, understanding the public's opinion of their government's policy-level, non-pharmaceutical interventions (NPIs) is a crucial component of the health-policy-making process. Prior work on CoViD-19 NPI sentiment analysi s by the epidemiological community has proceeded without a method for properly attributing sentiment changes to events, an ability to distinguish the influence of various events across time, a coherent model for predicting the public's opinion of future events of the same sort, nor even a means of conducting significance tests. We argue here that this urgently needed evaluation method does already exist. In the financial sector, event studies of the fluctuations in a publicly traded company's stock price are commonplace for determining the effects of earnings announcements, product placements, etc. The same method is suitable for analysing temporal sentiment variation in the light of policy-level NPIs. We provide a case study of Twitter sentiment towards policy-level NPIs in Canada. Our results confirm a generally positive connection between the announcements of NPIs and Twitter sentiment, and we document a promising correlation between the results of this study and a public-health survey of popular compliance with NPIs.
In this paper we introduce ArCOV19-Rumors, an Arabic COVID-19 Twitter dataset for misinformation detection composed of tweets containing claims from 27th January till the end of April 2020. We collected 138 verified claims, mostly from popular fact-c hecking websites, and identified 9.4K relevant tweets to those claims. Tweets were manually-annotated by veracity to support research on misinformation detection, which is one of the major problems faced during a pandemic. ArCOV19-Rumors supports two levels of misinformation detection over Twitter: verifying free-text claims (called claim-level verification) and verifying claims expressed in tweets (called tweet-level verification). Our dataset covers, in addition to health, claims related to other topical categories that were influenced by COVID-19, namely, social, politics, sports, entertainment, and religious. Moreover, we present benchmarking results for tweet-level verification on the dataset. We experimented with SOTA models of versatile approaches that either exploit content, user profiles features, temporal features and propagation structure of the conversational threads for tweet verification.
The spread of COVID-19 has been accompanied with widespread misinformation on social media. In particular, Twitterverse has seen a huge increase in dissemination of distorted facts and figures. The present work aims at identifying tweets regarding CO VID-19 which contains harmful and false information. We have experimented with a number of Deep Learning-based models, including different word embeddings, such as Glove, ELMo, among others. BERTweet model achieved the best overall F1-score of 0.881 and secured the third rank on the above task.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا