Do you want to publish a course? Click here

Deriving Word Vectors from Contextualized Language Models using Topic-Aware Mention Selection

اشتقاق ناقلات الكلمات من نماذج اللغة السياقية باستخدام تحديد الموضوع

244   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

One of the long-standing challenges in lexical semantics consists in learning representations of words which reflect their semantic properties. The remarkable success of word embeddings for this purpose suggests that high-quality representations can be obtained by summarizing the sentence contexts of word mentions. In this paper, we propose a method for learning word representations that follows this basic strategy, but differs from standard word embeddings in two important ways. First, we take advantage of contextualized language models (CLMs) rather than bags of word vectors to encode contexts. Second, rather than learning a word vector directly, we use a topic model to partition the contexts in which words appear, and then learn different topic-specific vectors for each word. Finally, we use a task-specific supervision signal to make a soft selection of the resulting vectors. We show that this simple strategy leads to high-quality word vectors, which are more predictive of semantic properties than word embeddings and existing CLM-based strategies.



References used
https://aclanthology.org/
rate research

Read More

Models based on the transformer architecture, such as BERT, have marked a crucial step forward in the field of Natural Language Processing. Importantly, they allow the creation of word embeddings that capture important semantic information about word s in context. However, as single entities, these embeddings are difficult to interpret and the models used to create them have been described as opaque. Binder and colleagues proposed an intuitive embedding space where each dimension is based on one of 65 core semantic features. Unfortunately, the space only exists for a small data-set of 535 words, limiting its uses. Previous work (Utsumi, 2018, 2020; Turton et al., 2020) has shown that Binder features can be derived from static embeddings and successfully extrapolated to a large new vocabulary. Taking the next step, this paper demonstrates that Binder features can be derived from the BERT embedding space. This provides two things; (1) semantic feature values derived from contextualised word embeddings and (2) insights into how semantic features are represented across the different layers of the BERT model.
In this study, we propose a self-supervised learning method that distils representations of word meaning in context from a pre-trained masked language model. Word representations are the basis for context-aware lexical semantics and unsupervised sema ntic textual similarity (STS) estimation. A previous study transforms contextualised representations employing static word embeddings to weaken excessive effects of contextual information. In contrast, the proposed method derives representations of word meaning in context while preserving useful context information intact. Specifically, our method learns to combine outputs of different hidden layers using self-attention through self-supervised learning with an automatically generated training corpus. To evaluate the performance of the proposed approach, we performed comparative experiments using a range of benchmark tasks. The results confirm that our representations exhibited a competitive performance compared to that of the state-of-the-art method transforming contextualised representations for the context-aware lexical semantic tasks and outperformed it for STS estimation.
One of the central aspects of contextualised language models is that they should be able to distinguish the meaning of lexically ambiguous words by their contexts. In this paper we investigate the extent to which the contextualised embeddings of word forms that display multiplicity of sense reflect traditional distinctions of polysemy and homonymy. To this end, we introduce an extended, human-annotated dataset of graded word sense similarity and co-predication acceptability, and evaluate how well the similarity of embeddings predicts similarity in meaning. Both types of human judgements indicate that the similarity of polysemic interpretations falls in a continuum between identity of meaning and homonymy. However, we also observe significant differences within the similarity ratings of polysemes, forming consistent patterns for different types of polysemic sense alternation. Our dataset thus appears to capture a substantial part of the complexity of lexical ambiguity, and can provide a realistic test bed for contextualised embeddings. Among the tested models, BERT Large shows the strongest correlation with the collected word sense similarity ratings, but struggles to consistently replicate the observed similarity patterns. When clustering ambiguous word forms based on their embeddings, the model displays high confidence in discerning homonyms and some types of polysemic alternations, but consistently fails for others.
Growing polarization of the news media has been blamed for fanning disagreement, controversy and even violence. Early identification of polarized topics is thus an urgent matter that can help mitigate conflict. However, accurate measurement of topic- wise polarization is still an open research challenge. To address this gap, we propose Partisanship-aware Contextualized Topic Embeddings (PaCTE), a method to automatically detect polarized topics from partisan news sources. Specifically, utilizing a language model that has been finetuned on recognizing partisanship of the news articles, we represent the ideology of a news corpus on a topic by corpus-contextualized topic embedding and measure the polarization using cosine distance. We apply our method to a dataset of news articles about the COVID-19 pandemic. Extensive experiments on different news sources and topics demonstrate the efficacy of our method to capture topical polarization, as indicated by its effectiveness of retrieving the most polarized topics.
The success of large-scale contextual language models has attracted great interest in probing what is encoded in their representations. In this work, we consider a new question: to what extent contextual representations of concrete nouns are aligned with corresponding visual representations? We design a probing model that evaluates how effective are text-only representations in distinguishing between matching and non-matching visual representations. Our findings show that language representations alone provide a strong signal for retrieving image patches from the correct object categories. Moreover, they are effective in retrieving specific instances of image patches; textual context plays an important role in this process. Visually grounded language models slightly outperform text-only language models in instance retrieval, but greatly under-perform humans. We hope our analyses inspire future research in understanding and improving the visual capabilities of language models.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا