Do you want to publish a course? Click here

Relation detection in knowledge base question answering, aims to identify the path(s) of relations starting from the topic entity node that is linked to the answer node in knowledge graph. Such path might consist of multiple relations, which we call multi-hop. Moreover, for a single question, there may exist multiple relation paths to the correct answer, which we call multi-label. However, most of existing approaches only detect one single path to obtain the answer without considering other correct paths, which might affect the final performance. Therefore, in this paper, we propose a novel divide-and-conquer approach for multi-label multi-hop relation detection (DC-MLMH) by decomposing it into head relation detection and conditional relation path generation. In specific, a novel path sampling mechanism is proposed to generate diverse relation paths for the inference stage. A majority-vote policy is employed to detect final KB answer. Comprehensive experiments were conducted on the FreebaseQA benchmark dataset. Experimental results show that the proposed approach not only outperforms other competitive multi-label baselines, but also has superiority over some state-of-art KBQA methods.
Unfair stereotypical biases (e.g., gender, racial, or religious biases) encoded in modern pretrained language models (PLMs) have negative ethical implications for widespread adoption of state-of-the-art language technology. To remedy for this, a wide range of debiasing techniques have recently been introduced to remove such stereotypical biases from PLMs. Existing debiasing methods, however, directly modify all of the PLMs parameters, which -- besides being computationally expensive -- comes with the inherent risk of (catastrophic) forgetting of useful language knowledge acquired in pretraining. In this work, we propose a more sustainable modular debiasing approach based on dedicated debiasing adapters, dubbed ADELE. Concretely, we (1) inject adapter modules into the original PLM layers and (2) update only the adapters (i.e., we keep the original PLM parameters frozen) via language modeling training on a counterfactually augmented corpus. We showcase ADELE, in gender debiasing of BERT: our extensive evaluation, encompassing three intrinsic and two extrinsic bias measures, renders ADELE, very effective in bias mitigation. We further show that -- due to its modular nature -- ADELE, coupled with task adapters, retains fairness even after large-scale downstream training. Finally, by means of multilingual BERT, we successfully transfer ADELE, to six target languages.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا