في هذه الورقة، نقول أننا نجس وكلاء متعدد الوسائط، أي تجسد الآلهة، يمكن أن يلعبون دورا مهما في تحريك معالجة اللغة الطبيعية نحو فهم عميق. "العوامل التفاعلية المميزة بالكامل، تصادف النموذج بين شخصين"، لكن وكيل لغة فقطلديه القليل من الوعي البيئي والطبيعة.يجلب الوكلاء المتعددون فرصا جديدة لتفسير الصور والمعلومات الإضافية والإيماءات، وما إلى ذلك، والتي هي المزيد من المحاور التي تواصلها.نقترح أن يقوم الوكلاء المتعددون، من خلال تسهيل شكل من أشكال التفاعل بين الحاسوب البشري، بنية إضافية يمكن استخدامها لتدريب النماذج التي تنقل أنظمة NLP أقرب إلى فهم حقيقي "" للغة المؤطرة، ونناقش الدراسات المستمرة باستخدام الأنظمة الحالية.
In this paper we argue that embodied multimodal agents, i.e., avatars, can play an important role in moving natural language processing toward deep understanding.'' Fully-featured interactive agents, model encounters between two people,'' but a language-only agent has little environmental and situational awareness. Multimodal agents bring new opportunities for interpreting visuals, locational information, gestures, etc., which are more axes along which to communicate. We propose that multimodal agents, by facilitating an embodied form of human-computer interaction, provide additional structure that can be used to train models that move NLP systems closer to genuine understanding'' of grounded language, and we discuss ongoing studies using existing systems.
References used
https://aclanthology.org/
Spoken language understanding (SLU) extracts the intended mean- ing from a user utterance and is a critical component of conversational virtual agents. In enterprise virtual agents (EVAs), language understanding is substantially challenging. First, t
The present study aims to identify the similarities and differences in the view of
values between the main social theoretical trends adopted as assets to discuss topics of
interest to sociology. These trends agreed in principle to give quality of o
Internet memes have become ubiquitous in social media networks today. Due to their popularity, they are also a widely used mode of expression to spread disinformation online. As memes consist of a mixture of text and image, they require a multi-modal
Due to the wide and rapid processing provided by the petrel program,
we have relied on the construction of a three-dimensional statistical
model of the studied area (Sabban Field - Ruttba and Malussa
Formations) using data for well-studied wells (
Adversarial training (AT) as a regularization method has proved its effectiveness on various tasks. Though there are successful applications of AT on some NLP tasks, the distinguishing characteristics of NLP tasks have not been exploited. In this pap