نقدم طريقة عامة لحساب الدقة الملحة لتخفيف البيانات الناتجة عن الحد الأدنى من جهود المستخدم.نحن ننظر إلى Prob-Lem كهامة لفحص الحقائق للتحقق من مطالبات NU-Merical في النص.يفترض التحقق من Gorithm أن البيانات المستخدمة في الحصول على النص متاح.في هذه الورقة، نقوم بفاية استخدام الحل المقترح قد استخدمه هذه المطالبات غير الصحيحة حول ملخصات كرة السلة TEX-Tual في سياق مهمة بدقة في INLG 2021.
We present a generic method to compute thefactual accuracy of a generated data summarywith minimal user effort. We look at the prob-lem as a fact-checking task to verify the nu-merical claims in the text. The verification al-gorithm assumes that the data used to generatethe text is available. In this paper, we describehow the proposed solution has been used toidentify incorrect claims about basketball tex-tual summaries in the context of the AccuracyShared Task at INLG 2021.
References used
https://aclanthology.org/
Pre-trained neural language models give high performance on natural language inference (NLI) tasks. But whether they actually understand the meaning of the processed sequences is still unclear. We propose a new diagnostics test suite which allows to
For decades, published Automatic Signature Verification (ASV) works depended on using one feature set. Some researchers selected this feature set based on their experience, and some others selected it using some feature selection algorithms that can
The present paper summarizes an attempt we made to meet a shared task challenge on grounding machine-generated summaries of NBA matchups (https://github.com/ehudreiter/accuracySharedTask.git). In the first half, we discuss methods and in the second,
Understanding tables is an important and relevant task that involves understanding table structure as well as being able to compare and contrast information within cells. In this paper, we address this challenge by presenting a new dataset and tasks
This work describes the adaptation of a pretrained sequence-to-sequence model to the task of scientific claim verification in the biomedical domain. We propose a system called VerT5erini that exploits T5 for abstract retrieval, sentence selection, an