تقدم هذه الورقة العمل نفذت لتحويل اللمعان في لغة الإشارة الإيطالية (LIS) إلى نص ثم يقرأه بعد ذلك بواسطة Windows TTS Synthesizer من إصدار تعديل SSML من نفس النص. في حين أن العديد من الأنظمة موجودة تولد لغة الإشارة من نص، قررنا القيام بعملية عكسية وإنشاء نص من LIS. لهذا الغرض، استخدمنا نسخة من القبلات السلحفاة والأرنب، الموقعة والمتاحة على YouTube by Alba Cooperativa Sociale، التي تم تفاحها يدويا من قبل المؤلف الثاني لأطروحة سيدها. من أجل تحقيق هدفنا، قامنا بتحويل المصطلحات متعددة الطبقات إلى شروط ProLolog الخطية التي ستغذيها للمولد. في الورقة نركز على المشكلات الرئيسية التي واجهتها في تحويل اللمعان إلى تمثيل متسق من الناحية الدلوية والبرادة. الناجمة عن المشاكل الرئيسية بسبب تعقيد نص مثل الخرافة التي تتطلب تنفيذ آليات Aquerence و Action الكلام في التمثيل والتي غالبا ما تكون غير مسبوقة وتشكل معلومات ضمنية.
This paper presents work carried out to transform glosses of a fable in Italian Sign Language (LIS) into a text which is then read by a TTS synthesizer from an SSML modified version of the same text. Whereas many systems exist that generate sign language from a text, we decided to do the reverse operation and generate text from LIS. For that purpose we used a version of the fable The Tortoise and the Hare, signed and made available on Youtube by ALBA cooperativa sociale, which was annotated manually by second author for her master's thesis. In order to achieve our goal, we converted the multilayer glosses into linear Prolog terms to be fed to the generator. In the paper we focus on the main problems encountered in the transformation of the glosses into a semantically and pragmatically consistent representation. The main problems have been caused by the complexities of a text like a fable which requires coreference mechanisms and speech acts to be implemented in the representation which are often unexpressed and constitute implicit information.
References used
https://aclanthology.org/
In this paper, we describe the process of developing a multilayer semantic annotation scheme designed for extracting information from a European Portuguese corpus of news articles, at three levels, temporal, referential and semantic role labelling. T
We implement the formalization of natural logic-like monotonic inference using Unscoped Episodic Logical Forms (ULFs) by Kim et al. (2020). We demonstrate this system's capacity to handle a variety of challenging semantic phenomena using the FraCaS d
Neural models trained for next utterance generation in dialogue task learn to mimic the n-gram sequences in the training set with training objectives like negative log-likelihood (NLL) or cross-entropy. Such commonly used training objectives do not f
Style transfer has been widely explored in natural language generation with non-parallel corpus by directly or indirectly extracting a notion of style from source and target domain corpus. A common shortcoming of existing approaches is the prerequisi
Most of existing extractive multi-document summarization (MDS) methods score each sentence individually and extract salient sentences one by one to compose a summary, which have two main drawbacks: (1) neglecting both the intra and cross-document rel