نقوم بتطبيق إضفاء الطابع الرسمي على الاستدلال الطبيعي الذي يشبه المنطق الطبيعي باستخدام أشكال منطقية غير مستقرة غير مستقرة (ULFS) بواسطة كيم وآخرون.(2020).نوضح قدرة هذا النظام على التعامل مع مجموعة متنوعة من الظواهر الدلالية الصعبة باستخدام DataSet Fracas (Cooper et al.، 1996).تعطي هذه النتائج أدلة تجريبية للمطالبات السابقة أن ULF هو تمثيل مناسب للتوسط في استنتاجات من المنطق الطبيعي.
We implement the formalization of natural logic-like monotonic inference using Unscoped Episodic Logical Forms (ULFs) by Kim et al. (2020). We demonstrate this system's capacity to handle a variety of challenging semantic phenomena using the FraCaS dataset (Cooper et al., 1996). These results give empirical evidence for prior claims that ULF is an appropriate representation to mediate natural logic-like inferences.
References used
https://aclanthology.org/
Episodic Logic: Unscoped Logical Form'' (EL-ULF) is a semantic representation capturing predicate-argument structure as well as more challenging aspects of language within the Episodic Logic formalism. We present the first learned approach for parsin
This paper introduces a new video-and-language dataset with human actions for multimodal logical inference, which focuses on intentional and aspectual expressions that describe dynamic human actions. The dataset consists of 200 videos, 5,554 action l
This paper presents work carried out to transform glosses of a fable in Italian Sign Language (LIS) into a text which is then read by a TTS synthesizer from an SSML modified version of the same text. Whereas many systems exist that generate sign lang
We investigate if a model can learn natural language with minimal linguistic input through interaction. Addressing this question, we design and implement an interactive language learning game that learns logical semantic representations compositional
Deep learning (DL) based language models achieve high performance on various benchmarks for Natural Language Inference (NLI). And at this time, symbolic approaches to NLI are receiving less attention. Both approaches (symbolic and DL) have their adva