في هذه الورقة، نقترح تنفيذ الدلالات الزمنية التي تترجم أشجار بناء الجملة إلى الصيغ المنطقية، ومناسبة للاستهلاك من قبل مساعد دليل COQ.يدعم التحليل مجموعة واسعة من الظواهر بما في ذلك: المراجع الزمنية والظروف الزمنية والفصول الجوفية والتقدميين.يتم بناء الدلالات الجديدة على رأس نظام سابق يتعامل مع جميع أقسام جناح اختبار FRACAS باستثناء القسم المرجعي الزمني، والحصول على دقة قدرها 81 في المائة عموما و 73 في المائة للمشاكل التي تحملها صراحة فيما يتعلق بالرجوع الزمني.على حد علمنا، هذا هو أفضل أداء للنظام المنطقي على كامل Fracas.
In this paper, we propose an implementation of temporal semantics that translates syntax trees to logical formulas, suitable for consumption by the Coq proof assistant. The analysis supports a wide range of phenomena including: temporal references, temporal adverbs, aspectual classes and progressives. The new semantics are built on top of a previous system handling all sections of the FraCaS test suite except the temporal reference section, and we obtain an accuracy of 81 percent overall and 73 percent for the problems explicitly marked as related to temporal reference. To the best of our knowledge, this is the best performance of a logical system on the whole of the FraCaS.
References used
https://aclanthology.org/
The aerodynamic performance of an airfoil of the shape NACA
4415 was investigated using CFD numerical analysis.
Split-and-rephrase is a challenging task that promotes the transformation of a given complex input sentence into multiple shorter sentences retaining equivalent meaning. This rewriting approach conceptualizes that shorter sentences benefit human read
Temporal commonsense reasoning is a challenging task as it requires temporal knowledge usually not explicit in text. In this work, we propose an ensemble model for temporal commonsense reasoning. Our model relies on pre-trained contextual representat
Participation in inter-laboratory comparison programs is an important means of laboratory quality
control and assessing laboratory performance, and these programs can be used by customers or
regulatory bodies for the selection of qualified laborato
Performance of neural models for named entity recognition degrades over time, becoming stale. This degradation is due to temporal drift, the change in our target variables' statistical properties over time. This issue is especially problematic for so