Do you want to publish a course? Click here

Numerical Analysis of NACA 4415 Airfoil Performance

التحليل العددي لأداء مقطع جناح NACA 4415

1253   0   84   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The aerodynamic performance of an airfoil of the shape NACA 4415 was investigated using CFD numerical analysis.


Artificial intelligence review:
Research summary
تناول البحث الذي أعده المهندس صلاح الشمالي دراسة الأداء الأيروديناميكي لمقطع جناح 4415 NACA باستخدام التحليل العددي وتقنيات ميكانيك الموائع الحسابي (CFD). ركزت الدراسة على جريان الهواء حول مقطع الجناح في المجال الانتقالي برقم رينولدز 5×10^5، مع التركيز على زوايا الهجوم الكبيرة لتحديد سلوك المقطع عند الانهيار. استخدم الباحث نموذج Spalart-Allmaras لنمذجة الجريان المضطرب، ووجدت النتائج الحسابية توافقًا جيدًا مع البيانات التجريبية المتاحة، خاصة في مجال زوايا الهجوم المدروسة. أظهرت النتائج أيضًا سطوح تساوي السرعة وخطوط التيار وسطوح تساوي الضغط حول الجناح، مما ساعد في توضيح انفصال الجريان وتشكيل الدوامات والانهيار عند زوايا الهجوم الكبيرة. أوصى الباحث باستخدام نماذج اضطراب أكثر تعقيدًا ودراسة مجالات مختلفة لرقم رينولدز لتحسين دقة النتائج.
Critical review
دراسة نقدية: على الرغم من أن البحث قدم تحليلًا دقيقًا وشاملًا للأداء الأيروديناميكي لمقطع جناح 4415 NACA، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الممكن استخدام نماذج اضطراب أكثر تعقيدًا مثل LES أو DNS للحصول على معلومات أكثر تفصيلًا عن طبيعة الجريان المضطرب، على الرغم من أن ذلك يتطلب موارد حسابية أكبر. ثانيًا، كان من المفيد تضمين دراسة تأثير تغير درجة الحرارة على الجريان، خاصة في التطبيقات العملية حيث يمكن أن تكون هذه العوامل ذات تأثير كبير. أخيرًا، كان من الممكن توسيع نطاق الدراسة ليشمل زوايا هجوم أصغر لتحسين التوافق مع البيانات التجريبية في جميع المجالات.
Questions related to the research
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي من البحث هو دراسة الأداء الأيروديناميكي لمقطع جناح 4415 NACA باستخدام التحليل العددي وتقنيات ميكانيك الموائع الحسابي (CFD)، مع التركيز على زوايا الهجوم الكبيرة لتحديد سلوك المقطع عند الانهيار.

  2. ما هو النموذج المستخدم لنمذجة الجريان المضطرب في الدراسة؟

    استخدم الباحث نموذج Spalart-Allmaras لنمذجة الجريان المضطرب في الدراسة.

  3. ما هي النتائج الرئيسية التي توصل إليها البحث؟

    توصل البحث إلى أن النتائج الحسابية لمعاملات الرفع والجر كانت متوافقة بشكل جيد مع البيانات التجريبية المتاحة، وأظهرت النتائج سطوح تساوي السرعة وخطوط التيار وسطوح تساوي الضغط حول الجناح، مما ساعد في توضيح انفصال الجريان وتشكيل الدوامات والانهيار عند زوايا الهجوم الكبيرة.

  4. ما هي التوصيات التي قدمها الباحث لتحسين دقة النتائج؟

    أوصى الباحث باستخدام نماذج اضطراب أكثر تعقيدًا مثل LES أو DNS، والتعمق في دراسة موضوع انهيار الأجنحة، ودراسة مجالات مختلفة لرقم رينولدز لتحديد تأثيره على الأداء الأيروديناميكي للجناح.


References used
ANDERSON J., 2001 - Fundamentals of Aerodynamics McGraw Hill, 3rd edition, USA, 892p
HOFFMANN K., CHIANG S., 2000 - Computational Fluid Dynamics Engineering Education System, 4th edition (3 volumes), USA, 175p
ABBOT I. VON DOENHOFF A., 1959 - Theory of Wing Sections, Including a Summary of Airfoil Data Dover Inc., USA, 693p
rate research

Read More

يتحدث المحتوى عن طرق الاستيفاء بالتحليل العددي بشكل برمجي وهما طريقتين طريقة استيفاء لاغرانج وطريقة سبلاين الخطية بلغة c++ والجافا وهما موجودين على شكل تطبيق اندرويد
This research study aims at investigating the potential benefits of using the reinforcement to improve the bearing capacity and reduce the settlement of strip footing on clay. To implement this objective, many numerical 2D-analyses by finite elemen t method / Plaxis program were performed to study the behavior of reinforced soil foundation. And then we carry out a parametric study of the most effective parameter on bearing capacity. The results showed that the inclusion of reinforcement can significantly improve the bearing capacity and reduce the footing settlement. The strain developed along the reinforcement is directly related to the settlement. The results also showed that the inclusion of reinforcement can redistribute the applied load to a wider area, thus minimizing stress concentration and achieving a more uniform stress distribution. The redistribution of stresses below the reinforced zone can result in reducing the settlement of the underlying weak clayey soil.
In this paper, we propose an implementation of temporal semantics that translates syntax trees to logical formulas, suitable for consumption by the Coq proof assistant. The analysis supports a wide range of phenomena including: temporal references, t emporal adverbs, aspectual classes and progressives. The new semantics are built on top of a previous system handling all sections of the FraCaS test suite except the temporal reference section, and we obtain an accuracy of 81 percent overall and 73 percent for the problems explicitly marked as related to temporal reference. To the best of our knowledge, this is the best performance of a logical system on the whole of the FraCaS.
The sheer volume of financial statements makes it difficult for humans to access and analyze a business's financials. Robust numerical reasoning likewise faces unique challenges in this domain. In this work, we focus on answering deep questions over financial data, aiming to automate the analysis of a large corpus of financial documents. In contrast to existing tasks on general domain, the finance domain includes complex numerical reasoning and understanding of heterogeneous representations. To facilitate analytical progress, we propose a new large-scale dataset, FinQA, with Question-Answering pairs over Financial reports, written by financial experts. We also annotate the gold reasoning programs to ensure full explainability. We further introduce baselines and conduct comprehensive experiments in our dataset. The results demonstrate that popular, large, pre-trained models fall far short of expert humans in acquiring finance knowledge and in complex multi-step numerical reasoning on that knowledge. Our dataset -- the first of its kind -- should therefore enable significant, new community research into complex application domains. The dataset and code are publicly available at https://github.com/czyssrs/FinQA.
While diverse question answering (QA) datasets have been proposed and contributed significantly to the development of deep learning models for QA tasks, the existing datasets fall short in two aspects. First, we lack QA datasets covering complex ques tions that involve answers as well as the reasoning processes to get them. As a result, the state-of-the-art QA research on numerical reasoning still focuses on simple calculations and does not provide the mathematical expressions or evidence justifying the answers. Second, the QA community has contributed a lot of effort to improve the interpretability of QA models. However, they fail to explicitly show the reasoning process, such as the evidence order for reasoning and the interactions between different pieces of evidence. To address the above shortcoming, we introduce NOAHQA, a conversational and bilingual QA dataset with questions requiring numerical reasoning with compound mathematical expressions. With NOAHQA, we develop an interpretable reasoning graph as well as the appropriate evaluation metric to measure the answer quality. We evaluate the state-of-the-art QA models trained using existing QA datasets on NOAHQA and show that the best among them can only achieve 55.5 exact match scores, while the human performance is 89.7. We also present a new QA model for generating a reasoning graph where the reasoning graph metric still has a large gap compared with that of humans, eg, 28 scores.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا