Do you want to publish a course? Click here

Great Service! Fine-grained Parsing of Implicit Arguments

خدمة رائعة!تحليل غرامة الحبيبات من الحجج الضمنية

298   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Broad-coverage meaning representations in NLP mostly focus on explicitly expressed content. More importantly, the scarcity of datasets annotating diverse implicit roles limits empirical studies into their linguistic nuances. For example, in the web review Great service!'', the provider and consumer are implicit arguments of different types. We examine an annotated corpus of fine-grained implicit arguments (Cui and Hershcovich, 2020) by carefully re-annotating it, resolving several inconsistencies. Subsequently, we present the first transition-based neural parser that can handle implicit arguments dynamically, and experiment with two different transition systems on the improved dataset. We find that certain types of implicit arguments are more difficult to parse than others and that the simpler system is more accurate in recovering implicit arguments, despite having a lower overall parsing score, attesting current reasoning limitations of NLP models. This work will facilitate a better understanding of implicit and underspecified language, by incorporating it holistically into meaning representations.



References used
https://aclanthology.org/
rate research

Read More

BERTScore, a recently proposed automatic metric for machine translation quality, uses BERT, a large pre-trained language model to evaluate candidate translations with respect to a gold translation. Taking advantage of BERT's semantic and syntactic ab ilities, BERTScore seeks to avoid the flaws of earlier approaches like BLEU, instead scoring candidate translations based on their semantic similarity to the gold sentence. However, BERT is not infallible; while its performance on NLP tasks set a new state of the art in general, studies of specific syntactic and semantic phenomena have shown where BERT's performance deviates from that of humans more generally. This naturally raises the questions we address in this paper: what are the strengths and weaknesses of BERTScore? Do they relate to known weaknesses on the part of BERT? We find that while BERTScore can detect when a candidate differs from a reference in important content words, it is less sensitive to smaller errors, especially if the candidate is lexically or stylistically similar to the reference.
We investigate the feasibility of defining sentiment evoked by fine-grained news events. Our research question is based on the premise that methods for detecting implicit sentiment in news can be a key driver of content diversity, which is one way to mitigate the detrimental effects of filter bubbles that recommenders based on collaborative filtering may produce. Our experiments are based on 1,735 news articles from major Flemish newspapers that were manually annotated, with high agreement, for implicit sentiment. While lexical resources prove insufficient for sentiment analysis in this data genre, our results demonstrate that machine learning models based on SVM and BERT are able to automatically infer the implicit sentiment evoked by news events.
Despite the success of neural dialogue systems in achieving high performance on the leader-board, they cannot meet users' requirements in practice, due to their poor reasoning skills. The underlying reason is that most neural dialogue models only cap ture the syntactic and semantic information, but fail to model the logical consistency between the dialogue history and the generated response. Recently, a new multi-turn dialogue reasoning task has been proposed, to facilitate dialogue reasoning research. However, this task is challenging, because there are only slight differences between the illogical response and the dialogue history. How to effectively solve this challenge is still worth exploring. This paper proposes a Fine-grained Comparison Model (FCM) to tackle this problem. Inspired by human's behavior in reading comprehension, a comparison mechanism is proposed to focus on the fine-grained differences in the representation of each response candidate. Specifically, each candidate representation is compared with the whole history to obtain a history consistency representation. Furthermore, the consistency signals between each candidate and the speaker's own history are considered to drive a model prefer a candidate that is logically consistent with the speaker's history logic. Finally, the above consistency representations are employed to output a ranking list of the candidate responses for multi-turn dialogue reasoning. Experimental results on two public dialogue datasets show that our method obtains higher ranking scores than the baseline models.
Dialogue summarization has drawn much attention recently. Especially in the customer service domain, agents could use dialogue summaries to help boost their works by quickly knowing customer's issues and service progress. These applications require s ummaries to contain the perspective of a single speaker and have a clear topic flow structure, while neither are available in existing datasets. Therefore, in this paper, we introduce a novel Chinese dataset for Customer Service Dialogue Summarization (CSDS). CSDS improves the abstractive summaries in two aspects: (1) In addition to the overall summary for the whole dialogue, role-oriented summaries are also provided to acquire different speakers' viewpoints. (2) All the summaries sum up each topic separately, thus containing the topic-level structure of the dialogue. We define tasks in CSDS as generating the overall summary and different role-oriented summaries for a given dialogue. Next, we compare various summarization methods on CSDS, and experiment results show that existing methods are prone to generate redundant and incoherent summaries. Besides, the performance becomes much worse when analyzing the performance on role-oriented summaries and topic structures. We hope that this study could benchmark Chinese dialogue summarization and benefit further studies.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose Label Reasoning Network(LRN), which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا