Do you want to publish a course? Click here

Data Augmentation by Concatenation for Low-Resource Translation: A Mystery and a Solution

تكبير البيانات عن طريق تسلسل للترجمة المنخفضة الموارد: لغز وحل

280   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we investigate the driving factors behind concatenation, a simple but effective data augmentation method for low-resource neural machine translation. Our experiments suggest that discourse context is unlikely the cause for concatenation improving BLEU by about +1 across four language pairs. Instead, we demonstrate that the improvement comes from three other factors unrelated to discourse: context diversity, length diversity, and (to a lesser extent) position shifting.



References used
https://aclanthology.org/
rate research

Read More

Recently, neural machine translation is widely used for its high translation accuracy, but it is also known to show poor performance at long sentence translation. Besides, this tendency appears prominently for low resource languages. We assume that t hese problems are caused by long sentences being few in the train data. Therefore, we propose a data augmentation method for handling long sentences. Our method is simple; we only use given parallel corpora as train data and generate long sentences by concatenating two sentences. Based on our experiments, we confirm improvements in long sentence translation by proposed data augmentation despite the simplicity. Moreover, the proposed method improves translation quality more when combined with back-translation.
We propose a data augmentation method for neural machine translation. It works by interpreting language models and phrasal alignment causally. Specifically, it creates augmented parallel translation corpora by generating (path-specific) counterfactua l aligned phrases. We generate these by sampling new source phrases from a masked language model, then sampling an aligned counterfactual target phrase by noting that a translation language model can be interpreted as a Gumbel-Max Structural Causal Model (Oberst and Sontag, 2019). Compared to previous work, our method takes both context and alignment into account to maintain the symmetry between source and target sequences. Experiments on IWSLT'15 English → Vietnamese, WMT'17 English → German, WMT'18 English → Turkish, and WMT'19 robust English → French show that the method can improve the performance of translation, backtranslation and translation robustness.
Data augmentation, which refers to manipulating the inputs (e.g., adding random noise,masking specific parts) to enlarge the dataset,has been widely adopted in machine learning. Most data augmentation techniques operate on a single input, which limit s the diversity of the training corpus. In this paper, we propose a simple yet effective data augmentation technique for neural machine translation, mixSeq, which operates on multiple inputs and their corresponding targets. Specifically, we randomly select two input sequences,concatenate them together as a longer input aswell as their corresponding target sequencesas an enlarged target, and train models on theaugmented dataset. Experiments on nine machine translation tasks demonstrate that such asimple method boosts the baselines by a non-trivial margin. Our method can be further combined with single input based data augmentation methods to obtain further improvements.
For Japanese-to-English translation, zero pronouns in Japanese pose a challenge, since the model needs to infer and produce the corresponding pronoun in the target side of the English sentence. However, although fully resolving zero pronouns often ne eds discourse context, in some cases, the local context within a sentence gives clues to the inference of the zero pronoun. In this study, we propose a data augmentation method that provides additional training signals for the translation model to learn correlations between local context and zero pronouns. We show that the proposed method significantly improves the accuracy of zero pronoun translation with machine translation experiments in the conversational domain.
In this paper we explore a very simple neural approach to mapping orthography to phonetic transcription in a low-resource context. The basic idea is to start from a baseline system and focus all efforts on data augmentation. We will see that some techniques work, but others do not.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا