Do you want to publish a course? Click here

Zero-pronoun Data Augmentation for Japanese-to-English Translation

Zero-proroun - تكبير البيانات للترجمة اليابانية إلى الإنجليزية

246   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

For Japanese-to-English translation, zero pronouns in Japanese pose a challenge, since the model needs to infer and produce the corresponding pronoun in the target side of the English sentence. However, although fully resolving zero pronouns often needs discourse context, in some cases, the local context within a sentence gives clues to the inference of the zero pronoun. In this study, we propose a data augmentation method that provides additional training signals for the translation model to learn correlations between local context and zero pronouns. We show that the proposed method significantly improves the accuracy of zero pronoun translation with machine translation experiments in the conversational domain.

References used
https://aclanthology.org/
rate research

Read More

We propose a data augmentation method for neural machine translation. It works by interpreting language models and phrasal alignment causally. Specifically, it creates augmented parallel translation corpora by generating (path-specific) counterfactua l aligned phrases. We generate these by sampling new source phrases from a masked language model, then sampling an aligned counterfactual target phrase by noting that a translation language model can be interpreted as a Gumbel-Max Structural Causal Model (Oberst and Sontag, 2019). Compared to previous work, our method takes both context and alignment into account to maintain the symmetry between source and target sequences. Experiments on IWSLT'15 English → Vietnamese, WMT'17 English → German, WMT'18 English → Turkish, and WMT'19 robust English → French show that the method can improve the performance of translation, backtranslation and translation robustness.
This paper describes NAIST's system for the English-to-Japanese Simultaneous Text-to-text Translation Task in IWSLT 2021 Evaluation Campaign. Our primary submission is based on wait-k neural machine translation with sequence-level knowledge distillation to encourage literal translation.
Data augmentation, which refers to manipulating the inputs (e.g., adding random noise,masking specific parts) to enlarge the dataset,has been widely adopted in machine learning. Most data augmentation techniques operate on a single input, which limit s the diversity of the training corpus. In this paper, we propose a simple yet effective data augmentation technique for neural machine translation, mixSeq, which operates on multiple inputs and their corresponding targets. Specifically, we randomly select two input sequences,concatenate them together as a longer input aswell as their corresponding target sequencesas an enlarged target, and train models on theaugmented dataset. Experiments on nine machine translation tasks demonstrate that such asimple method boosts the baselines by a non-trivial margin. Our method can be further combined with single input based data augmentation methods to obtain further improvements.
In this paper, we investigate the driving factors behind concatenation, a simple but effective data augmentation method for low-resource neural machine translation. Our experiments suggest that discourse context is unlikely the cause for concatenatio n improving BLEU by about +1 across four language pairs. Instead, we demonstrate that the improvement comes from three other factors unrelated to discourse: context diversity, length diversity, and (to a lesser extent) position shifting.
Sign language translation (SLT) is often decomposed into video-to-gloss recognition and gloss to-text translation, where a gloss is a sequence of transcribed spoken-language words in the order in which they are signed. We focus here on gloss-to-text translation, which we treat as a low-resource neural machine translation (NMT) problem. However, unlike traditional low resource NMT, gloss-to-text translation differs because gloss-text pairs often have a higher lexical overlap and lower syntactic overlap than pairs of spoken languages. We exploit this lexical overlap and handle syntactic divergence by proposing two rule-based heuristics that generate pseudo-parallel gloss-text pairs from monolingual spoken language text. By pre-training on this synthetic data, we improve translation from American Sign Language (ASL) to English and German Sign Language (DGS) to German by up to 3.14 and 2.20 BLEU, respectively.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا