في المنتديات عبر الإنترنت تركز على الصحة والرفاهية، يميل الأفراد إلى البحث عن الدعم الاجتماعي التالي وإعطاء الدعم العاطفي والإعلام. فهم تعبيرات هذه الدعم الاجتماعي في منتدى Covid - 19 عبر الإنترنت أمر مهم من أجل: (أ) المنتدى وأعضائه لتوفير النوع الصحيح من الدعم للأفراد و (ب) تحديد الآثار الطويلة الأجل لوباء Covid-19 على رفاه الجمهور، وبالتالي إبلاغ التدخلات. في هذا العمل، نبني أربع نماذج لتعليم الآلات لقياس مدى الدعم الاجتماعي التالي المعبر عنها في كل منشور في منتدى Covid-19 عبر الإنترنت: (أ) الدعم العاطفي المعطى (ب) سعى الدعم العاطفي (ج) الدعم المعلوماتي المعطى، و (د) سعى الدعم المعلوماتي. باستخدام هذه النماذج، نهدف إلى: (1) تحديد ما إذا كان هناك ارتباط بين الدعم الاجتماعي المختلفة المعبر عنه في مشاركات E.G. عندما يقدم أعضاء المنتدى الدعم العاطفي في الوظائف، هل يميلون أيضا إلى إعطاء أو طلب دعم إعلامي في نفس المنصب؟ (2) تحديد كيفية طلب هذه الدعم الاجتماعي والتغيرات مع مرور الوقت في الوظائف المنشورة. نجد أن (ط) هناك ارتباط إيجابي بين الدعم المعلوماتي الوارد في الوظائف والدعم العاطفي المعطى والدعم العاطفي المطلوب، على التوالي، في هذه الوظائف و (2) مع مرور الوقت، تميل المستخدمين إلى البحث عن المزيد من الدعم العاطفي وإعطاء أقل الدعم العاطفي.
In online forums focused on health and wellbeing, individuals tend to seek and give the following social support: emotional and informational support. Understanding the expressions of these social supports in an online COVID- 19 forum is important for: (a) the forum and its members to provide the right type of support to individuals and (b) determining the long term effects of the COVID-19 pandemic on the well-being of the public, thereby informing interventions. In this work, we build four machine learning models to measure the extent of the following social supports expressed in each post in a COVID-19 online forum: (a) emotional support given (b) emotional support sought (c) informational support given, and (d) informational support sought. Using these models, we aim to: (i) determine if there is a correlation between the different social supports expressed in posts e.g. when members of the forum give emotional support in posts, do they also tend to give or seek informational support in the same post? (ii) determine how these social supports sought and given changes over time in published posts. We find that (i) there is a positive correlation between the informational support given in posts and the emotional support given and emotional support sought, respectively, in these posts and (ii) over time, users tended to seek more emotional support and give less emotional support.
References used
https://aclanthology.org/
We present machine learning classifiers to automatically identify COVID-19 misinformation on social media in three languages: English, Bulgarian, and Arabic. We compared 4 multitask learning models for this task and found that a model trained with En
Stance detection, which aims to determine whether an individual is for or against a target concept, promises to uncover public opinion from large streams of social media data. Yet even human annotation of social media content does not always capture
This paper presents the preliminary results of an ongoing project that analyzes the growing body of scientific research published around the COVID-19 pandemic. In this research, a general-purpose semantic model is used to double annotate a batch of 5
Conversational Agents (CAs) can be a proxy for disseminating information and providing support to the public, especially in times of crisis. CAs can scale to reach larger numbers of end-users than human operators, while they can offer information int
We present a COVID-19 news dashboard which visualizes sentiment in pandemic news coverage in different languages across Europe. The dashboard shows analyses for positive/neutral/negative sentiment and moral sentiment for news articles across countrie