في هذه الورقة، نقدم رؤية تجاه إنشاء منصة مالطا لتكنولوجيا اللغات الوطنية؛جهد مستمر يهدف إلى توفير أساس لتعزيز اللغات الرسمية في مالطا، أي المالطية والإنجليزية، باستخدام الترجمة الآلية.سيؤدي ذلك إلى المساهمة في تحسين دعم تكنولوجيا اللغة الحالية لغوية لغة الموارد المنخفضة المالطية، عبر حقول اللغويات الحسابية المتعددة، مثل معالجة الكلام والترجمة الآلية وتحليل النصوص ومصادر متعددة الوسائط.تتمثل الأهداف النهائية في إزالة الحواجز اللغوية، وزيادة إمكانية الوصول، وتعزيز الخدمات عبر الحدود، والأهم من ذلك لتسهيل الحفاظ على اللغة المالطية.
In this paper we introduce a vision towards establishing the Malta National Language Technology Platform; an ongoing effort that aims to provide a basis for enhancing Malta's official languages, namely Maltese and English, using Machine Translation. This will contribute towards the current niche of Language Technology support for the Maltese low-resource language, across multiple computational linguistics fields, such as speech processing, machine translation, text analysis, and multi-modal resources. The end goals are to remove language barriers, increase accessibility, foster cross-border services, and most importantly to facilitate the preservation of the Maltese language.
References used
https://aclanthology.org/
Unsupervised translation has reached impressive performance on resource-rich language pairs such as English-French and English-German. However, early studies have shown that in more realistic settings involving low-resource, rare languages, unsupervi
Although many end-to-end context-aware neural machine translation models have been proposed to incorporate inter-sentential contexts in translation, these models can be trained only in domains where parallel documents with sentential alignments exist
A comparison of formulaic sequences in human and neural machine translation of quality newspaper articles shows that neural machine translations contain less lower-frequency, but strongly-associated formulaic sequences (FSs), and more high-frequency
In this work, two Neural Machine Translation (NMT) systems have been developed and evaluated as part of the bidirectional Tamil-Telugu similar languages translation subtask in WMT21. The OpenNMT-py toolkit has been used to create quick prototypes of
Low-resource Multilingual Neural Machine Translation (MNMT) is typically tasked with improving the translation performance on one or more language pairs with the aid of high-resource language pairs. In this paper and we propose two simple search base