في هذا العمل، نحقق في أساليب المهمة الصعبة المتمثلة في الترجمة بين أزواج لغة الموارد المنخفضة التي تظهر بعض مستوى التشابه.على وجه الخصوص، نعتبر فائدة نقل التعلم للترجمة بين العديد من لغات الموارد المنخفضة الأوروبية من الهند من الأسر الجرمانية والرومانسية.على وجه الخصوص، نبني اثنين من الطبقات الرئيسية من النظم القائمة على النقل لدراسة كيفية استخدام ترابط الأداء الترجمة.النظام الأساسي يضم النموذج الذي تم تدريبه مسبقا على زوج لغة ذات صلة ونظام قابل للتناقض بشكل جيد-قم بإلغاء التدريب مسبقا على زوج لغة غير ذات صلة.تبين تجاربنا أنه على الرغم من أن المرتبطة ليست ضرورية لنقل التعلم للعمل، إلا أنها تنفذ أداء نموذجي.
In this work, we investigate methods for the challenging task of translating between low- resource language pairs that exhibit some level of similarity. In particular, we consider the utility of transfer learning for translating between several Indo-European low-resource languages from the Germanic and Romance language families. In particular, we build two main classes of transfer-based systems to study how relatedness can benefit the translation performance. The primary system fine-tunes a model pre-trained on a related language pair and the contrastive system fine-tunes one pre-trained on an unrelated language pair. Our experiments show that although relatedness is not necessary for transfer learning to work, it does benefit model performance.
References used
https://aclanthology.org/
This paper describes TenTrans' submission to WMT21 Multilingual Low-Resource Translation shared task for the Romance language pairs. This task focuses on improving translation quality from Catalan to Occitan, Romanian and Italian, with the assistance
This paper describes Charles University sub-mission for Terminology translation shared task at WMT21. The objective of this task is to design a system which translates certain terms based on a provided terminology database, while preserving high over
This paper describes the participation of the BSC team in the WMT2021's Multilingual Low-Resource Translation for Indo-European Languages Shared Task. The system aims to solve the Subtask 2: Wikipedia cultural heritage articles, which involves transl
For most language combinations and parallel data is either scarce or simply unavailable. To address this and unsupervised machine translation (UMT) exploits large amounts of monolingual data by using synthetic data generation techniques such as back-
Low-resource languages sometimes take on similar morphological and syntactic characteristics due to their geographic nearness and shared history. Two low-resource neighboring languages found in Peru, Quechua and Ashaninka, can be considered, at first