تحسنت جودة الترجمات التي تم إنشاؤها بواسطة أنظمة الترجمة الآلية (MT) بشكل كبير خلال السنوات، لكننا لا نزال بعيدا للحصول على ترجمات عالية الجودة التلقائية بالكامل.لتوليدهم والمترجمين يستفيدون من أدوات الترجمة المساعدة بمساعدة الكمبيوتر وبينها نجد أنظمة الترجمة الآلية التفاعلية (IPMT).في هذه الورقة، نستخدم ملاحظات الحساب على أنها المعلومات الرئيسية والوحيدة اللازمة لإنشاء تنبؤات جديدة تصحح الترجمات السابقة.يقلل تطبيق ملاحظات الحساب بشكل كبير من عدد الكلمات التي يحتاجها المترجم إلى كتابة جلسة IPMT.في الختام واستخدام هذه التقنية يوفر وقتا مفيدا وجهده للمترجمين وتحسين أدائها مع التقدم المستقبلي في MT وهكذا نوصي بتطبيقها في أنظمة IPMT الفعلية.
The quality of the translations generated by Machine Translation (MT) systems has highly improved through the years and but we are still far away to obtain fully automatic high-quality translations. To generate them and translators make use of Computer-Assisted Translation (CAT) tools and among which we find the Interactive-Predictive Machine Translation (IPMT) systems. In this paper and we use bandit feedback as the main and only information needed to generate new predictions that correct the previous translations. The application of bandit feedback reduces significantly the number of words that the translator need to type in an IPMT session. In conclusion and the use of this technique saves useful time and effort to translators and its performance improves with the future advances in MT and so we recommend its application in the actuals IPMT systems.
References used
https://aclanthology.org/
Interactive-predictive translation is a collaborative iterative process and where human translators produce translations with the help of machine translation (MT) systems interactively. Various sampling techniques in active learning (AL) exist to upd
Dravidian languages, such as Kannada and Tamil, are notoriously difficult to translate by state-of-the-art neural models. This stems from the fact that these languages are morphologically very rich as well as being low-resourced. In this paper, we fo
Many NLP models operate over sequences of subword tokens produced by hand-crafted tokenization rules and heuristic subword induction algorithms. A simple universal alternative is to represent every computerized text as a sequence of bytes via UTF-8,
Machine translation performs automatic translation from one natural language to another. Neural machine translation attains a state-of-the-art approach in machine translation, but it requires adequate training data, which is a severe problem for low-
The paper presents experiments in neural machine translation with lexical constraints into a morphologically rich language. In particular and we introduce a method and based on constrained decoding and which handles the inflected forms of lexical ent